4 research outputs found

    What have we learned from the streptozotocin-induced animal model of sporadic Alzheimer's disease, about the therapeutic strategies in Alzheimer's research

    Get PDF
    Experimental models that faithfully mimic the developmental pathology of sporadic Alzheimer's disease (sAD) in humans are important for testing the novel therapeutic approaches in sAD treatment. Widely used transgenic mice AD models have provided valuable insights into the molecular mechanisms underlying the memory decline but, due to the particular β-amyloid-related gene manipulation, they resemble the familial but not the sporadic AD form, and are, therefore, inappropriate for this purpose. In line with the recent findings of sAD being recognised as an insulin resistant brains state (IRBS), a new, non-transgenic, animal model has been proposed as a representative model of sAD, developed by intracerebroventricular application of the betacytotoxic drug streptozotocin (STZ-icv). The STZ-icv-treated animals (mostly rats and mice) develop IRBS associated with memory impairment and progressive cholinergic deficits, glucose hypometabolism, oxidative stress and neurodegeneration that share many features in common with sAD in humans. The therapeutic strategies (acetylcholinesterase inhibitors, antioxidants and many other drugs) that have been tested until now on the STZ-icv animal model have been reviewed and the comparability of the drugs' efficacy in this non-transgenic sAD model and the results from clinical trials on sAD patients, evaluated

    A photoinduced electron transfer-based nanoprobe as a marker of acidic organelles in mammalian cells

    No full text
    Photoinduced electron transfer (PET)-based molecular probes have been successfully used for the intracellular imaging of the pH of acidic organelles. In this study, we describe the synthesis and characterization of a novel PET-based pH nanoprobe and its biological application for the signaling of acidic organelles in mammalian cells. A fluorescent ligand sensitive to pH via the PET mechanism that incorporates a thiolated moiety was synthesized and used to stabilize gold nanoparticles (2.4?±?0.6 nm), yielding a PET-based nanoprobe. The PET nanoprobe was unambiguously characterized by transmission electron microscopy, proton nuclear magnetic resonance, Fourier transform infrared, ultraviolet-visible absorption, and steady-state/time-resolved fluorescence spectroscopies which confirmed the functionalization of the gold nanoparticles with the PET-based ligand. Following a classic PET behavior, the fluorescence emission of the PET-based nanoprobe was quenched in alkaline conditions and enhanced in an acidic environment. The PET-based nanoprobe was used for the intracellular imaging of acidic environments within Chinese hamster ovary cells by confocal laser scanning microscopy. The internalization of the nanoparticles by the cells was confirmed by confocal fluorescence images and also by recording the fluorescence emission spectra of the intracellular PET-based nanoprobe from within the cells. Co-localization experiments using a marker of acidic organelles, LysoTracker Red DND-99, and a marker of autophagosomes, GFP-LC3, confirm that the PET-based nanoprobe acts as marker of acidic organelles and autophagosomes within mammalian cells
    corecore