337 research outputs found

    Graphene-oxide modified polyvinyl-alcohol as microbial carrier to improve high salt wastewater treatment

    Get PDF
    This work discussed the preparation and characterization of graphene oxide (GO) modified polyvinyl alcohol (PVA) for bacteria immobilization to enhance the biodegrdation efficiency of saline organic wastewater. GO-PVA material has lamellar structure with higher surface area to support bacterial growth and high salinity tolerance. It significantly stimulated the bacterial population by 1.4 times from 2.07×103 CFU/mL to 5.04×103 CFU/mL, and the microbial structure was also improved for salinity tolerance. Acinetobacter, Pseudomonas and Thermophilic hydrogen bacilli were enriched inside GO-PVA materials for glucose biodegradation. Compared to the CODCr removal efficiency with only PVA as the carrier (52.8%), GO-PVA material had better degradation performance (62.8%). It is proved as a good candidate for bioaugmentation to improve biodegradation efficiency in hypersaline organic wastewater

    Unravelling the Structure of Magnus' Pink Salt

    Get PDF
    A combination of multinuclear ultra-wideline solid-state NMR, powder X-ray diffraction (pXRD), X-ray absorption fine structure experiments, and first principles calculations of platinum magnetic shielding tensors has been employed to reveal the previously unknown crystal structure of Magnus’ pink salt (MPS), [Pt(NH3)4][PtCl4], study the isomeric Magnus’ green salt (MGS), [Pt(NH3)4][PtCl4], and examine their synthetic precursors K2PtCl4 and Pt(NH3)4Cl2·H2O. A simple synthesis of MPS is detailed which produces relatively pure product in good yield. Broad 195Pt, 14N, and 35Cl SSNMR powder patterns have been acquired using the WURST-CPMG and BRAIN-CP/WURST-CPMG pulse sequences. Experimentally measured and theoretically calculated platinum magnetic shielding tensors are shown to be very sensitive to the types and arrangements of coordinating ligands as well as intermolecular Pt–Pt metallophilic interactions. High-resolution 195Pt NMR spectra of select regions of the broad 195Pt powder patterns, in conjunction with an array of 14N and 35Cl spectra, reveal clear structural differences between all compounds. Rietveld refinements of synchrotron pXRD patterns, guided by first principles geometry optimization calculations, yield the space group, unit cell parameters, and atomic positions of MPS. The crystal structure has P-1 symmetry and resides in a pseudotetragonal unit cell with a distance of >5.5 Å between Pt sites in the square-planar Pt units. The long Pt–Pt distances and nonparallel orientation of Pt square planes prohibit metallophilic interactions within MPS. The combination of ultra-wideline NMR, pXRD, and computational methods offers much promise for future investigation and characterization of Pt-containing systems

    Fault Orientation Trumps Fault Maturity in Controlling Coseismic Rupture Characteristics of the 2021 Maduo Earthquake

    Get PDF
    Fault maturity has been proposed to exert a first order control on earthquake rupture, yet direct observations linking individual rupture to long-term fault growth are rare. The 2021 Mw 7.4 Maduo earthquake ruptured the east-growing end of the slow-moving (∼1 mm/yr) Jiangcuo fault in north Tibet, providing an opportunity to examine the relation between rupture characteristics and fault structure. Here we combine field and multiple remote sensing techniques to map the surface rupture at cm-resolution and document comprehensively on-fault offsets and off-fault deformation. The 158 km-long surface rupture consists of misoriented structurally inherited N110°-striking segments and younger optimally oriented N093°-striking segments, relative to the regional stress field. Despite being comparatively newly formed, the ∼N093°-striking fault segments accommodate more localized strain, with up to 3 m on-fault left-lateral slip and 25%–50% off-fault deformation, and possibly faster rupture speed. These results are in contrast with previous findings showing more localized strain and faster rupture speed on more mature fault segments; instead, our observations suggest that fault orientation with respect to the regional stress can exert a more important control than fault maturity on coseismic rupture behavior when both factors are at play

    Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction

    Get PDF
    The water-gas shift (WGS) reaction (where carbon monoxide plus water yields dihydrogen and carbon dioxide) is an essential process for hydrogen generation and carbon monoxide removal in various energy-related chemical operations. This equilibrium-limited reaction is favored at a low working temperature. Potential application in fuel cells also requires a WGS catalyst to be highly active, stable, and energy-efficient and to match the working temperature of on-site hydrogen generation and consumption units. We synthesized layered gold (Au) clusters on a molybdenum carbide (α-MoC) substrate to create an interfacial catalyst system for the ultralow-temperature WGS reaction. Water was activated over α-MoC at 303 kelvin, whereas carbon monoxide adsorbed on adjacent Au sites was apt to react with surface hydroxyl groups formed from water splitting, leading to a high WGS activity at low temperatures

    Patterns of attentional bias in antenatal depression: an eye-tracking study

    Get PDF
    IntroductionOne of the most common mental disorders in the perinatal period is depression, which is associated with impaired emotional functioning due to alterations in different cognitive aspects including thought and facial emotion recognition. These functional impairment may affect emerging maternal sensitivity and have lasting consequences for the dyadic relationship. The current study aimed to investigate the impact of depressive symptoms on the attention bias of infant stimuli during pregnancy.MethodsEighty-six pregnant women completed the Edinburgh Postnatal Depression Scale and an eye-tracking task comprising infant-related emotion images. All participants showed biased attention to infant-related images.ResultsFirst, compared to healthy pregnant women, pregnant women with depression symptoms initially directed their attention to infant-related stimuli more quickly (F (1, 84) = 6.175, p = 0.015, η2 = 0.068). Second, the two groups of pregnant women paid attention to the positive infant stimuli faster than the neutral infant stimuli, and the first fixation latency bias score was significantly smaller than that of the infant-related negative stimulus (p = 0.007). Third, compared with the neutral stimulus, the non-depression group showed a longer first gaze duration to the negative stimulus of infants (p = 0.019), while the depressive symptoms group did not show this difference.ConclusionWe speculate that structural and functional changes in affective motivation and cognitive-attention brain areas may induce these attentional bias patterns. These results provide suggestions for the implementation of clinical intervention programs to correct the attention bias of antenatal depressed women

    Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era

    Get PDF
    The LHCb Upgrade II will fully exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHCb spectrometer. The LHCb Upgrade I will begin operation in 2020. Consolidation will occur, and modest enhancements of the Upgrade I detector will be installed, in Long Shutdown 3 of the LHC (2025) and these are discussed here. The main Upgrade II detector will be installed in long shutdown 4 of the LHC (2030) and will build on the strengths of the current LHCb experiment and the Upgrade I. It will operate at a luminosity up to 2×1034 cm−2s−1, ten times that of the Upgrade I detector. New detector components will improve the intrinsic performance of the experiment in certain key areas. An Expression Of Interest proposing Upgrade II was submitted in February 2017. The physics case for the Upgrade II is presented here in more depth. CP-violating phases will be measured with precisions unattainable at any other envisaged facility. The experiment will probe b → sl+l−and b → dl+l− transitions in both muon and electron decays in modes not accessible at Upgrade I. Minimal flavour violation will be tested with a precision measurement of the ratio of B(B0 → μ+μ−)/B(Bs → μ+μ−). Probing charm CP violation at the 10−5 level may result in its long sought discovery. Major advances in hadron spectroscopy will be possible, which will be powerful probes of low energy QCD. Upgrade II potentially will have the highest sensitivity of all the LHC experiments on the Higgs to charm-quark couplings. Generically, the new physics mass scale probed, for fixed couplings, will almost double compared with the pre-HL-LHC era; this extended reach for flavour physics is similar to that which would be achieved by the HE-LHC proposal for the energy frontier

    LHCb upgrade software and computing : technical design report

    Get PDF
    This document reports the Research and Development activities that are carried out in the software and computing domains in view of the upgrade of the LHCb experiment. The implementation of a full software trigger implies major changes in the core software framework, in the event data model, and in the reconstruction algorithms. The increase of the data volumes for both real and simulated datasets requires a corresponding scaling of the distributed computing infrastructure. An implementation plan in both domains is presented, together with a risk assessment analysis

    Growth and Grain Boundaries in 2D Materials

    No full text

    Analysis of the influence of dynamic components of AC/DC system on transient voltage stability based on energy function method

    No full text
    With the interconnection of large power networks, transient voltage stability of AC/DC power systems has been paid more attention in recent years. To investigate main influence of generating facility, high-voltage direct current (HVDC) and motor load for transient voltage stability, from the perspective of the generalised branch potential energy, the new indexes, and analysis method is proposed here. First, an energy function for AC/DC system is constructed with major dynamic components, namely classical HVDC control systems and motors in third-order model. Accordingly, the influence effects of the above major dynamic elements are investigated based on indexes from the corresponding generalised branch potential energy. With the rule of change in transient potential energy distribution in the network and information in stability margins, an evaluating procedure is established. Here, the judgment of transient voltage stability employs a heuristic energy function method. Finally, simulation tests on three-machine system with a HVDC transmission line are conducted in PSAT package, and the obtained results demonstrate the feasibility and effectiveness of the proposed method

    Active ingredients from Chinese medicine plants as therapeutic strategies for asthma: Overview and challenges

    No full text
    Although considerable advance has been made in diagnosing and treating, asthma is still a serious public health challenge. Traditional Chinese medicine (TCM) is an effective therapy of complementary and alternative medicine. More and more scientific evidences support the use of TCM for asthma treatment, and active ingredients from Chinese medicine plants are becoming a hot issue. Purpose of review: To summarize the frontier knowledge on the function and underlying mechanisms of the active ingredients in asthma treatments and provide a fully integrated, reliable reference for exploring innovative treatments for asthma. Methods: The cited literature was obtained from the PubMed and CNIK databases (up to September 2020). Experimental studies on the active ingredients of Chinese medicine and their therapeutic mechanisms were identified. The key words used in the literature retrieval were “asthma” and “traditional Chinese medicine” or “Chinese herbal medicine”. The literature on the active ingredients was then screened manually. Results: We summarized the effect of these active ingredients on asthma, primarily including the effect through which these ingredients can regulate the immunologic equilibrium mechanism by acting on a number of signalling pathways, such as Notch, JAK-STAT-MAPK, adiponectin-iNOS-NF-κB, PGD2-CRTH2, PI3K/AKT, Keap1-Nrf2/HO-1, T-bet/Gata-3 and Foxp3-RORγt, thereby regulating the progression of asthma. Conclusion: The active ingredients from Chinese medicine have multilevel effects on asthma by regulating the immunologic equilibrium mechanism or signalling pathways, giving them great clinical value. However, the safety and functional mechanism of these ingredients still must be further determined
    corecore