100 research outputs found

    Small-seeded Hakea species tolerate cotyledon loss better than large-seeded congeners.

    Get PDF
    Six Hakea species varying greatly in seed size were selected for cotyledon damage experiments. The growth of seedlings with cotyledons partially or completely removed was monitored over 90 days. All seedlings perished by the fifth week when both cotyledons were removed irrespective of seed size. Partial removal of cotyledons caused a significant delay in the emergence of the first leaf, and reduction in root and shoot growth of the large-seeded species. The growth of seedlings of small-seeded species was less impacted by cotyledon damage. The rate of survival, root and shoot lengths and dry biomass of the seedlings were determined after 90 days. When seedlings were treated with balanced nutrient solutions following removal of the cotyledons, survival was 95-98%, but 0% when supplied with nutrient solutions lacking N or P or with water only. The addition of a balanced nutrient solution failed to restore complete growth of any species, but the rate of root elongation for the small-seeded species was maintained. Cotyledons provide nutrients to support early growth of Hakea seedlings, but other physiological roles for the cotyledons are also implicated. In conclusion, small-seeded Hakea species can tolerate cotyledons loss better than large-seeded species

    Factors associated with low cure rate of tuberculosis in remote poor areas of Shaanxi Province, China: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The directly observed therapy-short course (DOTS) strategy was introduced in Shaanxi province, China to improve tuberculosis (TB) control by means of improved case detection (target: > = 70%) and treatment success rates (target: > = 85%) in new smear positive (SS+) TB patients. At a provincial level the targets were both reached in 2005. However in 30 (28%) out of 107 counties of Shaanxi province the cure rate was below 85%. This study aimed to investigate patient and treatment characteristics associated with non-cure after tuberculosis (TB) treatment in these counties.</p> <p>Methods</p> <p>In this case-control study, new smear positive TB cases in 30 counties with a cure rate <85% were included. Cured patients were compared to non-cured patients using logistic regression analysis to assess determinants for non-cure.</p> <p>Results</p> <p>Of the 659 patients included, 153 (23.2%) did not have cure as treatment outcome. Interruption of treatment was most strongly associated with non-cure (OR = 8.7, 95% CI 3.9-18.4). Other independent risk factors were co-morbidity, low education level, lack of appetite as an initial symptom of TB disease, diagnosis of TB outside of the government TB control institutes, missing sputum re-examinations during treatment, and not having a treatment observer. Twenty-six percent of patients did not have a treatment observer. The non-cure rate was better for those with a doctor (odds ratio (OR) 0.38, 95% confidence interval (CI) 0.17-0.88) as treatment observer than for those with a family member (OR 0.62, 95%CI 0.37-1.03). The main reason for interrupted treatment mentioned by patients was presence of adverse effects during treatment (46.5%).</p> <p>Conclusions</p> <p>Interruption of treatment was most strongly associated with non-cure. Although treatment observation by medical staff is preferred, in order to diminish the proportion of patients who do not have a treatment observer and thereby reduce the proportion of patients who interrupt treatment, we suggest making it possible for family members, after sufficient training, to be treatment observers in remote areas where it is logistically difficult to have village doctors observe treatment for all patients.</p

    Formal verification of safety protocol in train control system

    Get PDF
    In order to satisfy the safety-critical requirements, the train control system (TCS) often employs a layered safety communication protocol to provide reliable services. However, both description and verification of the safety protocols may be formidable due to the system complexity. In this paper, interface automata (IA) are used to describe the safety service interface behaviors of safety communication protocol. A formal verification method is proposed to describe the safety communication protocols using IA and translate IA model into PROMELA model so that the protocols can be verified by the model checker SPIN. A case study of using this method to describe and verify a safety communication protocol is included. The verification results illustrate that the proposed method is effective to describe the safety protocols and verify deadlocks, livelocks and several mandatory consistency properties. A prototype of safety protocols is also developed based on the presented formally verifying method

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Global urban environmental change drives adaptation in white clover

    Get PDF
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale

    Evolutionary history of fire-stimulated resprouting, flowering, seed release and germination

    No full text
    Fire has shaped the evolution of many plant traits in fire-prone environments: fire-resistant tissues with heat-insulated meristems, post-fire resprouting or fire-killed but regenerating from stored seeds, fire-stimulated flowering, release of on-plant-stored seeds, and germination of soil-stored seeds. Flowering, seed release and germination fit into three categories of response to intensifying fire: fire not required, weakly fire-adapted or strongly fire-adapted. Resprouting also has three categories but survival is always reduced by increasing fire intensity. We collated 286 records for 20 angiosperm and two gymnosperm families and 50 trait assignments to dated phylogenies. We placed these into three fire-adapted trait types: those associated with the origin of their clade and the onset of fire-proneness [primary diversification, contributing 20% of speciation events over the last 120 million years (My)], those originating much later coincident with a change in the fire regime (secondary diversification, 30%), and those conserved in the daughter lineage as already adapted to the fire regime (stabilisation, 50%). All four fire-response types could be traced to &gt;100 My ago (Mya) with pyrogenic flowering slightly younger because of its dependence on resprouting. There was no evidence that resprouting was always an older trait than either seed storage or non-sprouting throughout this period, with either/both ancestral or derived in different clades and times. Fire-adapted traits evolved slowly in the Cretaceous, 120-65 Mya, and rapidly but fitfully in the Cenozoic, 65-0 Mya, peaking over the last 20 My. The four trait-types climaxed at different times, with the peak in resprouter speciation over the last 5 My attributable to fluctuating growing conditions and increasing savanna grasslands unsuitable for non-sprouters. All experienced a trough in the 40-30-Mya period following a reduction in world temperatures and oxygen levels and expected reduced fire activity. Thick bark and serotiny arose in the Mid-Cretaceous among extant Pinaceae. Heat-stimulated germination of hard seeds is ancestral in the 103-My-old Fabales. Smoke-(karrikin)-stimulated germination of non-hard seeds is even older, and includes the 101-My-old Restionaceae-Anarthriaceae. A smoke/karrikin response is detectable in some fire-free lineages that prove to have a fire-prone ancestry. Among clades that are predominantly fire-prone, absence of fire-related traits is the advanced condition, associated either with increased fire frequency (loss of serotiny and soil storage), or migration to fire-free habitats (loss of thick bark, pyrogenic flowering, serotiny or soil storage). Protea (Africa) and Hakea (Australia) illustrate the importance of stabilisation processes between resprouting/non-sprouting in accounting for speciation events over the last 20 My and highlight the frequent interchange possible between these two traits. Apart from Pinus, most ancestral trait reconstruction relative to fire has been conducted on predominantly Southern Hemisphere clades and this needs to be redressed. Despite these limitations, it is clear that fire has had a profound effect on fire-related trait evolution worldwide, and set the platform for subsequent evolution of many non-fire-related traits. Genetics of the triggering mechanisms remain poorly understood, except the karrikin system for smoke-stimulated germination. We exhort biologists to include fire-proneness and fire-related traits in their thinking on possible factors controlling the evolution of plants

    Fire as a pre-emptive evolutionary trigger among seed plants

    No full text
    © 2018 Elsevier GmbH There is mounting evidence that much of the world's vegetation has been fire-prone since the Upper Cretaceous, taking precedence over Cenozoic drought as a key agent of selection in the evolution of specialized traits adaptive to environmental stresses that otherwise result in species extinction. This raises the question of when the advent of surface fires occurred compared with the introduction of other critical selective agents, such as frost, seasonal drought, crown fire, nutrient-impoverished soils, new habitat types, and novel pollinators, herbivores and dispersal agents. Of particular interest is the relative time of origin of traits associated with fire-free habitats that traditionally have been viewed as ancestral. We collated 47 paired time sequences for a wide range of clades most of whose species are fire-prone. The objective was to determine the order of origin of fire-related traits relative to the origin of other fire-related traits associated with different fire regimes or non-fire-related traits in response to selective agents unrelated to fire. The results show that the initiation of fire-related traits in response to moderate fires (trigger 1) preceded either a) other fire-related traits that represent responses to an increase in the intensity or frequency of fire (trigger 2) (10 comparisons), b) traits associated with fire-free habitats (12 comparisons), or c) novel traits associated with selective agents unlinked to fire, with the fire-related traits now stabilized (25 comparisons). The only exception was the presence of ectomycorrhizas among pines, which are diagnostic for Pinaceae, suggesting that adaptations to poor soils occurred before this highly fire-prone genus evolved. For some early traits, there was confounding with several possible key selective agents apparently acting concurrently, although fire was always present, and these await further clarification. We conclude that fire has had a pre-emptive role in shaping many specialized traits fundamental to plant survival among fire-prone clades and that other selective agents, such as summer drought, have had a secondary role in promoting the evolution of additional novel traits that increased fitness in more recent times

    Research Progress on Ferroptosis-mediated Antitumor Immunotherapy

    No full text
    Ferroptosis is a form of programmed cell death driven by iron-dependent lipid peroxidation and is closely associated with a wide range of biological processes, such as aging, immunity, and cancer. Tumor multidrug resistance, especially resistance to apoptosis, has prompted the urgent search for a new antitumor treatment option. Remarkable progress has been made in the study of the role of ferroptosis in antitumor, especially the interaction with immune cells. Studying immunotherapy based on ferroptosis pathways has become a new direction in antitumor research. In this work, we review the role of ferroptosis in immune cells and antitumor immunotherapy to provide new ideas for ferroptosis-mediated antitumor immunotherapy

    TBCK Influences Cell Proliferation, Cell Size and mTOR Signaling Pathway

    Get PDF
    <div><p>Mammalian target of rapamycin (mTOR) is a central regulator for both cell proliferation and cell growth; however, little is known about the regulation of mTOR expression at the transcriptional level. Here, we provide evidences that a conserved human protein TBCK (TBC1 domain containing kinase) is involved in the regulation of mTOR signaling pathway. Depletion of TBCK significantly inhibits cell proliferation, reduces cell size, and disrupts the organization of actin, but not microtubule. Knockdown of TBCK induces a significant decrease in the protein levels of components of mTOR complex (mTORC), and suppresses the activity of mTOR signaling, but not MAPK or PDK1/Akt pathway. Further results show that TBCK influences the expression of mTORC components at the transcriptional level. Thus, these data suggest that TBCK may play an important role in cell proliferation, cell growth and actin organization possibly by modulating mTOR pathway.</p></div
    • 

    corecore