182 research outputs found

    Probing the cosmological initial conditions using the CMB

    Get PDF
    Ope

    Cylindrically Symmetric Inhomogeneous Universes with a Cloud of Strings

    Full text link
    Cylindrically symmetric inhomogeneous string cosmological models are investigated in presence of string fluid as a source of matter. To get the three types of exact solutions of Einstein's field equations we assume A=f(x)k(t)A = f(x)k(t), B=g(x)(t)B = g(x)\ell(t) and C=h(x)(t)C = h(x)\ell(t). Some physical and geometric aspects of the models are discussed.Comment: 9 page

    Some Bianchi Type III String Cosmological Models with Bulk Viscosity

    Get PDF
    We investigate the integrability of cosmic strings in Bianchi III space-time in presence of a bulk viscous fluid by applying a new technique. The behaviour of the model is reduced to the solution of a single second order nonlinear differential equation. We show that this equation admits an infinite family of solutions. Some physical consequences from these results are also discussed.Comment: 12 pages, no figure. To appear in Int. J. Theor. Phy

    Bulk Viscous LRS Biachi-I Universe with variable GG and decaying Λ\Lambda

    Full text link
    The present study deals with spatially homogeneous and totally anisotropic locally rotationally symmetric (LRS) Bianchi type I cosmological model with variable GG and Λ\Lambda in presence of imperfect fluid. To get the deterministic model of Universe, we assume that the expansion (θ)(\theta) in the model is proportional to shear (σ)(\sigma). This condition leads to A=BnA=\ell B^{n}, where AA,\;BB are metric potential. The cosmological constant Λ\Lambda is found to be decreasing function of time and it approaches a small positive value at late time which is supported by recent Supernovae Ia (SN Ia) observations. Also it is evident that the distance modulus curve of derived model matches with observations perfectly.Comment: 11 pages, 4 figures and 1 table, Accepted for publication in Astrophysics and Space Scienc

    Synthesis, Characterization and Antimicrobial Screening of Novel Hydrazide Ligand & It’s Transition Metal Complexes

    Get PDF
    Published ArticleDifferent transition metal complexes were synthesized from novel 3-bromo-2-[1-(4-hydroxy-6-methyl-2-oxo-2H-pyran-3- yl)ethylidene]hydrazide ligand (H2L) and characterized by spectral techniques. The synthesized ligand was found to act mono as well as di deprotonated (OH, NH) manner and stoichiometry of the ligand to metal ions was confirmed to be 1:1 in case of complex using metal chloride salts, whereas 1:2 in case of metal(II) complexes using metal acetate(II) salt. Structures of metal complexes were confirmed by IR, 1H NMR, TGA, XRD, elemental analysis and UV technique which revealed that Mn(II), Co(II), Ni(II), Cu(II) complexes were octahedral geometry and those of Cu(II), Zn(II) showed square planner and tetrahedral geometry around metal ion respectively. Furthermore H2L and its metal complexes were screened for antimicrobial activity which showed that ligand enhanced its biological activity after coordination with metal ions. In particular, Cd(II) and Mn(II) complexes exhibited excellent antifungal activity

    A New Class of Inhomogeneous String Cosmological Models in General Relativity

    Full text link
    A new class of solutions of Einstein field equations has been investigated for inhomogeneous cylindrically symmetric space-time with string source. To get the deterministic solution, it has been assumed that the expansion (θ\theta) in the model is proportional to the eigen value σ11\sigma^{1}_{1} of the shear tensor σji\sigma^{i}_{j}. Certain physical and geometric properties of the models are also discussed.Comment: 12 pages, no figure. Submitted to Astrophys. Space Sci. arXiv admin note: substantial text overlap with arXiv:0705.090

    Dissipative Future Universe without Big Rip

    Full text link
    The present study deals with dissipative future universe without big rip in context of Eckart formalism. The generalized chaplygin gas, characterized by equation of state p=Aρ1αp=-\frac{A}{\rho^\frac{1}{\alpha}}, has been considered as a model for dark energy due to its dark-energy-like evolution at late time. It is demonstrated that, if the cosmic dark energy behaves like a fluid with equation of state p=ωρp=\omega\rho; ω<1\omega < -1, as well as chaplygin gas simultaneously then the big rip problem does not arises and the scale factor is found to be regular for all time.Comment: 6 pages, 2 figures, To appear in Int. J. Theor. Phy

    Lyra's Cosmology of Massive String in Anisotropic Bianchi-II Space-time

    Full text link
    The paper deals with a spatially homogeneous and totally anisotropic Bianchi II cosmological models representing massive strings in normal gauge for Lyra's manifold. The modified Einstein's field equations have been solved by applying variation law for Hubble's parameter. This law generates two type of solutions for average scale factor, one is of power law type and other is of exponential law type. The power law describes the dynamics of Universe from big bang to present epoch while exponential law seems reasonable to project dynamics of future Universe. It has been found that the displacement actor (β)(\beta) is a decreasing function of time and it approaches to small positive value at late time, which is collaborated with Halford (1970) as well as recent observations of SN Ia. The study reveals that massive strings dominate in early Universe and eventually disappear from Universe for sufficiently large time, which is in agreement with the current astronomical observations.Comment: 12 pages, 5 figure

    Constraining Running Non-Gaussianity

    Full text link
    The primordial non-Gaussian parameter fNL has been shown to be scale-dependent in several models of inflation with a variable speed of sound. Starting from a simple ansatz for a scale-dependent amplitude of the primordial curvature bispectrum for two common phenomenological models of primordial non-Gaussianity, we perform a Fisher matrix analysis of the bispectra of the temperature and polarization of the Cosmic Microwave Background (CMB) radiation and derive the expected constraints on the parameter nNG that quantifies the running of fNL(k) for current and future CMB missions such as WMAP, Planck and CMBPol. We find that CMB information alone, in the event of a significant detection of the non-Gaussian component, corresponding to fNL = 50 for the local model and fNL = 100 for the equilateral model of non-Gaussianity, is able to determine nNG with a 1-sigma uncertainty of Delta nNG = 0.1 and Delta nNG = 0.3, respectively, for the Planck mission. In addition, we consider a Fisher matrix analysis of the galaxy power spectrum to determine the expected constraints on the running parameter nNG for the local model and of the galaxy bispectrum for the equilateral model from future photometric and spectroscopic surveys. We find that, in both cases, large-scale structure observations should achieve results comparable to or even better than those from the CMB, while showing some complementarity due to the different distribution of the non-Gaussian signal over the relevant range of scales. Finally, we compare our findings to the predictions on the amplitude and running of non-Gaussianity of DBI inflation, showing how the constraints on a scale-dependent fNL(k) translate into constraints on the parameter space of the theory.Comment: 37 pages, 14 figure
    corecore