512 research outputs found
Poynting vector, energy density and energy velocity in anomalous dispersion medium
The Poynting vector, energy density and energy velocity of light pulses
propagating in anomalous dispersion medium (used in WKD-like experiments) are
calculated. Results show that a negative energy density in the medium
propagates along opposite of incident direction with such a velocity similar to
the negative group velocity while the direction of the Poynting vector is
positive. In other words, one might say that a positive energy density in the
medium would propagate along the positive direction with a speed having
approximately the absolute valueof the group velocity. We further point out
that neither energy velocity nor group velocity is a good concept to describe
the propagation process of light pulse inside the medium in WKD experiment
owing to the strong accumulation and dissipation effects.Comment: 6 page
Edge states and topological orders in the spin liquid phases of star lattice
A group of novel materials can be mapped to the star lattice, which exhibits
some novel physical properties. We give the bulk-edge correspondence theory of
the star lattice and study the edge states and their topological orders in
different spin liquid phases. The bulk and edge-state energy structures and
Chern number depend on the spin liquid phases and hopping parameters because
the local spontaneous magnetic flux in the spin liquid phase breaks the time
reversal and space inversion symmetries. We give the characteristics of bulk
and edge energy structures and their corresponding Chern numbers in the
uniform, nematic and chiral spin liquids. In particular, we obtain analytically
the phase diagram of the topological orders for the chiral spin liquid states
SL[\phi,\phi,-2\phi], where \phi is the magnetic flux in two triangles and a
dodecagon in the unit cell. Moreover, we find the topological invariance for
the spin liquid phases, SL[\phi_{1},\phi_{2},-(\phi_{1}+\phi_{2})] and
SL[\phi_{2},\phi_{1},-(\phi_{1}+\phi_{2})]. The results reveal the relationship
between the energy-band and edge-state structures and their topological orders
of the star lattice.Comment: 7 pages, 8 figures, 1 tabl
SUSY vertex algebras and supercurves
This article is a continuation of math.QA/0603633 Given a strongly conformal
SUSY vertex algebra V and a supercurve X we construct a vector bundle V_X on X,
the fiber of which, is isomorphic to V. Moreover, the state-field
correspondence of V canonically gives rise to (local) sections of these vector
bundles. We also define chiral algebras on any supercurve X, and show that the
vector bundle V_X, corresponding to a SUSY vertex algebra, carries the
structure of a chiral algebra.Comment: 50 page
Cosmological evolution and statefinder diagnostic for new holographic dark energy model in non flat universe
In this paper, the holographic dark energy model with new infrared cut-off
proposed by Granda and Oliveros has been investigated in spatially non flat
universe. The dependency of the evolution of equation of state, deceleration
parameter and cosmological evolution of Hubble parameter on the parameters of
new HDE model are calculated. Also, the statefinder parameters and in
this model are derived and the evolutionary trajectories in plane are
plotted. We show that the evolutionary trajectories are dependent on the model
parameters of new HDE model. Eventually, in the light of SNe+BAO+OHD+CMB
observational data, we plot the evolutionary trajectories in and
planes for best fit values of the parameters of new HDE model.Comment: 11 pages, 5 figures, Accepted by Astrophys. Space Sc
Statefinder diagnostic and stability of modified gravity consistent with holographic and new agegraphic dark energy
Recently one of us derived the action of modified gravity consistent with the
holographic and new-agegraphic dark energy. In this paper, we investigate the
stability of the Lagrangians of the modified gravity as discussed in [M. R.
Setare, Int. J. Mod. Phys. D 17 (2008) 2219; M. R. Setare, Astrophys. Space
Sci. 326 (2010) 27]. We also calculate the statefinder parameters which
classify our dark energy model.Comment: 12 pages, 2 figures, accepted by Gen. Relativ. Gravi
Holographic dark energy with time varying parameter
We consider the holographic dark energy model in which the model parameter
evolves slowly with time. First we calculate the evolution of EoS
parameter as well as the deceleration parameter in this generalized version of
holographic dark energy (GHDE). Depending on the parameter , the phantom
regime can be achieved earlier or later compare with original version of
holographic dark energy. The evolution of energy density of GHDE model is
investigated in terms of parameter . We also show that the time-dependency
of can effect on the transition epoch from decelerated phase to
accelerated expansion. Finally, we perform the statefinder diagnostic for GHDE
model and show that the evolutionary trajectories of the model in plane
are strongly depend on the parameter .Comment: 16 pages, 4 figures, accepted by Astrophys Space Sc
Partial Wave Analysis of
BES data on are presented. The
contribution peaks strongly near threshold. It is fitted with a
broad resonance with mass MeV, width MeV. A broad resonance peaking at 2020 MeV is also required
with width MeV. There is further evidence for a component
peaking at 2.55 GeV. The non- contribution is close to phase
space; it peaks at 2.6 GeV and is very different from .Comment: 15 pages, 6 figures, 1 table, Submitted to PL
Measurements of the observed cross sections for exclusive light hadrons containing at , 3.650 and 3.6648 GeV
By analyzing the data sets of 17.3, 6.5 and 1.0 pb taken,
respectively, at , 3.650 and 3.6648 GeV with the BES-II
detector at the BEPC collider, we measure the observed cross sections for
, , ,
and at the three energy
points. Based on these cross sections we set the upper limits on the observed
cross sections and the branching fractions for decay into these
final states at 90% C.L..Comment: 7 pages, 2 figure
Partial wave analysis of J/\psi \to \gamma \phi \phi
Using events collected in the BESII detector, the
radiative decay is
studied. The invariant mass distribution exhibits a near-threshold
enhancement that peaks around 2.24 GeV/.
A partial wave analysis shows that the structure is dominated by a
state () with a mass of
GeV/ and a width of GeV/. The
product branching fraction is: .Comment: 11 pages, 4 figures. corrected proof for journa
- …