415 research outputs found
Water wave propagation and scattering over topographical bottoms
Here I present a general formulation of water wave propagation and scattering
over topographical bottoms. A simple equation is found and is compared with
existing theories. As an application, the theory is extended to the case of
water waves in a column with many cylindrical steps
Theoretical analysis of the focusing of acoustic waves by two-dimensional sonic crystals
Motivated by a recent experiment on acoustic lenses, we perform numerical
calculations based on a multiple scattering technique to investigate the
focusing of acoustic waves with sonic crystals formed by rigid cylinders in
air. The focusing effects for crystals of various shapes are examined. The
dependance of the focusing length on the filling factor is also studied. It is
observed that both the shape and filling factor play a crucial role in
controlling the focusing. Furthermore, the robustness of the focusing against
disorders is studied. The results show that the sensitivity of the focusing
behavior depends on the strength of positional disorders. The theoretical
results compare favorably with the experimental observations, reported by
Cervera, et al. (Phys. Rev. Lett. 88, 023902 (2002)).Comment: 8 figure
Gapless Spin-Fluid Ground State in a Random Quantum Heisenberg Magnet
We examine the spin- quantum Heisenberg magnet with Gaussian-random,
infinite-range exchange interactions. The quantum-disordered phase is accessed
by generalizing to symmetry and studying the large limit. For large
the ground state is a spin-glass, while quantum fluctuations produce a
spin-fluid state for small . The spin-fluid phase is found to be generically
gapless - the average, zero temperature, local dynamic spin-susceptibility
obeys \bar{\chi} (\omega ) \sim \log(1/|\omega|) + i (\pi/2) \mbox{sgn}
(\omega) at low frequencies. This form is identical to the phenomenological
`marginal' spectrum proposed by Varma {\em et. al.\/} for the doped cuprates.Comment: 13 pages, REVTEX, 2 figures available by request from
[email protected]
First-principles study of the structural energetics of PdTi and PtTi
The structural energetics of PdTi and PtTi have been studied using
first-principles density-functional theory with pseudopotentials and a
plane-wave basis. We predict that in both materials, the experimentally
reported orthorhombic phase will undergo a low-temperature phase
transition to a monoclinic ground state. Within a soft-mode framework,
we relate the structure to the cubic structure, observed at high
temperature, and the structure to via phonon modes strongly
coupled to strain. In contrast to NiTi, the structure is extremely close
to hcp. We draw on the analogy to the bcc-hcp transition to suggest likely
transition mechanisms in the present case.Comment: 8 pages 5 figure
Classification and nondegeneracy of Toda system with singular sources
We consider the following Toda system \Delta u_i + \D \sum_{j = 1}^n
a_{ij}e^{u_j} = 4\pi\gamma_{i}\delta_{0} \text{in}\mathbb R^2, \int_{\mathbb
R^2}e^{u_i} dx -1\delta_0a_{ij}\gamma_i=0\forall \;1\leq i\leq n\gamma_i+\gamma_{i+1}+...+\gamma_j \notin \mathbb Z1\leq i\leq
j\leq nu_i$ is \textit{radially symmetric} w.r.t. 0.
(iii) We prove that the linearized equation at any solution is
\textit{non-degenerate}. These are fundamental results in order to understand
the bubbling behavior of the Toda system.Comment: 28 page
Partial Wave Analysis of
BES data on are presented. The
contribution peaks strongly near threshold. It is fitted with a
broad resonance with mass MeV, width MeV. A broad resonance peaking at 2020 MeV is also required
with width MeV. There is further evidence for a component
peaking at 2.55 GeV. The non- contribution is close to phase
space; it peaks at 2.6 GeV and is very different from .Comment: 15 pages, 6 figures, 1 table, Submitted to PL
Three chromosome-scale Papaver genomes reveal punctuated patchwork evolution of the morphinan and noscapine biosynthesis pathway
Papaver species P. setigerum, P. rhoeas, and P. somniferum accumulates different levels of morphine and noscapine. Here, the authors report the improved genome assembly of P. somniferum and de novo assembly of the other two species, and reveal the evolution of the benzylisoquinoline alkaloids biosynthetic pathway.For millions of years, plants evolve plenty of structurally diverse secondary metabolites (SM) to support their sessile lifestyles through continuous biochemical pathway innovation. While new genes commonly drive the evolution of plant SM pathway, how a full biosynthetic pathway evolves remains poorly understood. The evolution of pathway involves recruiting new genes along the reaction cascade forwardly, backwardly, or in a patchwork manner. With three chromosome-scale Papaver genome assemblies, we here reveal whole-genome duplications (WGDs) apparently accelerate chromosomal rearrangements with a nonrandom distribution towards SM optimization. A burst of structural variants involving fusions, translocations and duplications within 7.7 million years have assembled nine genes into the benzylisoquinoline alkaloids gene cluster, following a punctuated patchwork model. Biosynthetic gene copies and their total expression matter to morphinan production. Our results demonstrate how new genes have been recruited from a WGD-induced repertoire of unregulated enzymes with promiscuous reactivities to innovate efficient metabolic pathways with spatiotemporal constraint.Computer Science
A Measurement of Psi(2S) Resonance Parameters
Cross sections for e+e- to hadons, pi+pi- J/Psi, and mu+mu- have been
measured in the vicinity of the Psi(2S) resonance using the BESII detector
operated at the BEPC. The Psi(2S) total width; partial widths to hadrons,
pi+pi- J/Psi, muons; and corresponding branching fractions have been determined
to be Gamma(total)= (264+-27) keV; Gamma(hadron)= (258+-26) keV, Gamma(mu)=
(2.44+-0.21) keV, and Gamma(pi+pi- J/Psi)= (85+-8.7) keV; and Br(hadron)=
(97.79+-0.15)%, Br(pi+pi- J/Psi)= (32+-1.4)%, Br(mu)= (0.93+-0.08)%,
respectively.Comment: 8 pages, 6 figure
Direct Measurements of Absolute Branching Fractions for D0 and D+ Inclusive Semimuonic Decays
By analyzing about 33 data sample collected at and around 3.773
GeV with the BES-II detector at the BEPC collider, we directly measure the
branching fractions for the neutral and charged inclusive semimuonic decays
to be and , and determine the ratio of the two branching
fractions to be
Measurement of branching fractions for the inclusive Cabibbo-favored ~K*0(892) and Cabibbo-suppressed K*0(892) decays of neutral and charged D mesons
The branching fractions for the inclusive Cabibbo-favored ~K*0 and
Cabibbo-suppressed K*0 decays of D mesons are measured based on a data sample
of 33 pb-1 collected at and around the center-of-mass energy of 3.773 GeV with
the BES-II detector at the BEPC collider. The branching fractions for the
decays D+(0) -> ~K*0(892)X and D0 -> K*0(892)X are determined to be BF(D0 ->
\~K*0X) = (8.7 +/- 4.0 +/- 1.2)%, BF(D+ -> ~K*0X) = (23.2 +/- 4.5 +/- 3.0)% and
BF(D0 -> K*0X) = (2.8 +/- 1.2 +/- 0.4)%. An upper limit on the branching
fraction at 90% C.L. for the decay D+ -> K*0(892)X is set to be BF(D+ -> K*0X)
< 6.6%
- …