31 research outputs found
Logarithmic roughening in a growth process with edge evaporation
Roughening transitions are often characterized by unusual scaling properties.
As an example we investigate the roughening transition in a solid-on-solid
growth process with edge evaporation [Phys. Rev. Lett. 76, 2746 (1996)], where
the interface is known to roughen logarithmically with time. Performing
high-precision simulations we find appropriate scaling forms for various
quantities. Moreover we present a simple approximation explaining why the
interface roughens logarithmically.Comment: revtex, 6 pages, 7 eps figure
Domain wall roughening in dipolar films in the presence of disorder
We derive a low-energy Hamiltonian for the elastic energy of a N\'eel domain
wall in a thin film with in-plane magnetization, where we consider the
contribution of the long-range dipolar interaction beyond the quadratic
approximation. We show that such a Hamiltonian is analogous to the Hamiltonian
of a one-dimensional polaron in an external random potential. We use a replica
variational method to compute the roughening exponent of the domain wall for
the case of two-dimensional dipolar interactions.Comment: REVTEX, 35 pages, 2 figures. The text suffered minor changes and
references 1,2 and 12 were added to conform with the referee's repor
Eigen model as a quantum spin chain: exact dynamics
We map Eigen model of biological evolution [Naturwissenschaften {\bf 58}, 465
(1971)] into a one-dimensional quantum spin model with non-Hermitean
Hamiltonian. Based on such a connection, we derive exact relaxation periods for
the Eigen model to approach static energy landscape from various initial
conditions. We also study a simple case of dynamic fitness function.Comment: 10 pages. Physical Revew E vol. 69, in press (2004
Gapless Spin-Fluid Ground State in a Random Quantum Heisenberg Magnet
We examine the spin- quantum Heisenberg magnet with Gaussian-random,
infinite-range exchange interactions. The quantum-disordered phase is accessed
by generalizing to symmetry and studying the large limit. For large
the ground state is a spin-glass, while quantum fluctuations produce a
spin-fluid state for small . The spin-fluid phase is found to be generically
gapless - the average, zero temperature, local dynamic spin-susceptibility
obeys \bar{\chi} (\omega ) \sim \log(1/|\omega|) + i (\pi/2) \mbox{sgn}
(\omega) at low frequencies. This form is identical to the phenomenological
`marginal' spectrum proposed by Varma {\em et. al.\/} for the doped cuprates.Comment: 13 pages, REVTEX, 2 figures available by request from
[email protected]
Unified order-disorder vortex phase transition in high-Tc superconductors
The diversity of vortex melting and solid-solid transition lines measured in
different high-T superconductors is explained, postulating a unified
order-disorder phase transition driven by both thermally- and disorder-induced
fluctuations. The temperature dependence of the transition line and the nature
of the disordered phase (solid, liquid, or pinned liquid) are determined by the
relative contributions of these fluctuations and by the pinning mechanism. By
varying the pinning mechanism and the pinning strength one obtains a spectrum
of monotonic and non-monotonic transition lines similar to those measured in
BiSrCaCuO, YBaCuO,
NdCeCuO,
BiPbSrCaCuO and (LaSr)CuOComment: To be published in Phys. Rev. B Rapid Com
Replica Symmetry Breaking Instability in the 2D XY model in a random field
We study the 2D vortex-free XY model in a random field, a model for randomly
pinned flux lines in a plane. We construct controlled RG recursion relations
which allow for replica symmetry breaking (RSB). The fixed point previously
found by Cardy and Ostlund in the glass phase is {\it unstable} to RSB.
The susceptibility associated to infinitesimal RSB perturbation in the
high-temperature phase is found to diverge as
when . This provides analytical evidence that RSB occurs
in finite dimensional models. The physical consequences for the glass phase are
discussed.Comment: 8 pages, REVTeX, LPTENS-94/2
Disorder and thermally driven vortex-lattice melting in La{2-x}Sr{x}CuO{4} crystals
Magnetization measurements in La{2-x}Sr{x}CuO{4} crystals indicate vortex
order-disorder transition manifested by a sharp kink in the second
magnetization peak. The transition field exhibits unique temperature
dependence, namely a strong decrease with temperature in the entire measured
range. This behavior rules out the conventional interpretation of a
disorder-driven transition into an entangled vortex solid phase. It is shown
that the transition in La{2-x}Sr{x}CuO{4} is driven by both thermally- and
disorder-induced fluctuations, resulting in a pinned liquid state. We conclude
that vortex solid-liquid, solid-solid and solid to pinned-liquid transitions
are different manifestations of the same thermodynamic order-disorder
transition, distinguished by the relative contributions of thermal and
disorder-induced fluctuations.Comment: To be published in phys. Rev. B Rapid Com
Effects of columnar disorder on flux-lattice melting in high-temperature superconductors
The effect of columnar pins on the flux-lines melting transition in
high-temperature superconductors is studied using Path Integral Monte Carlo
simulations. We highlight the similarities and differences in the effects of
columnar disorder on the melting transition in YBaCuO
(YBCO) and the highly anisotropic BiSrCaCuO (BSCCO) at
magnetic fields such that the mean separation between flux-lines is smaller
than the penetration length. For pure systems, a first order transition from a
flux-line solid to a liquid phase is seen as the temperature is increased. When
adding columnar defects to the system, the transition temperature is not
affected in both materials as long as the strength of an individual columnar
defect (expressed as a flux-line defect interaction) is less than a certain
threshold for a given density of randomly distributed columnar pins. This
threshold strength is lower for YBCO than for BSCCO. For higher strengths the
transition line is shifted for both materials towards higher temperatures, and
the sharp jump in energy, characteristic of a first order transition, gives way
to a smoother and gradual rise of the energy, characteristic of a second order
transition. Also, when columnar defects are present, the vortex solid phase is
replaced by a pinned Bose glass phase and this is manifested by a marked
decrease in translational order and orientational order as measured by the
appropriate structure factors. For BSCCO, we report an unusual rise of the
translational order and the hexatic order just before the melting transition.
No such rise is observed in YBCO.Comment: 32 pages, 13 figures, revte
Effect of Quantum Fluctuations in an Ising System on Small-World Networks
We study quantum Ising spins placed on small-world networks. A simple model
is considered in which the coupling between any given pair of spins is a
nonzero constant if they are linked in the small-world network and zero
otherwise. By applying a transverse magnetic field, we have investigated the
effect of quantum fluctuations. Our numerical analysis shows that the quantum
fluctuations do not alter the universality class at the ferromagnetic phase
transition, which is of the mean-field type. The transition temperature is
reduced by the quantum fluctuations and eventually vanishes at the critical
transverse field . With increasing rewiring probability,
is shown to be enhanced.Comment: 5 pages, 5 figure
Fermionic SK-models with Hubbard interaction: Magnetism and electronic structure
Models with range-free frustrated Ising spin- and Hubbard interaction are
treated exactly by means of the discrete time slicing method. Critical and
tricritical points, correlations, and the fermion propagator, are derived as a
function of temperature T, chemical potential \mu, Hubbard coupling U, and spin
glass energy J. The phase diagram is obtained. Replica symmetry breaking
(RSB)-effects are evaluated up to four-step order (4RSB). The use of exact
relations together with the 4RSB-solutions allow to model exact solutions by
interpolation. For T=0, our numerical results provide strong evidence that the
exact density of states in the spin glass pseudogap regime obeys \rho(E)=const
|E-E_F| for energies close to the Fermi level. Rapid convergence of \rho'(E_F)
under increasing order of RSB is observed. The leading term resembles the
Efros-Shklovskii Coulomb pseudogap of localized disordered fermionic systems in
2D. Beyond half filling we obtain a quadratic dependence of the fermion filling
factor on the chemical potential. We find a half filling transition between a
phase for U>\mu, where the Fermi level lies inside the Hubbard gap, into a
phase where \mu(>U) is located at the center of the upper spin glass pseudogap
(SG-gap). For \mu>U the Hubbard gap combines with the lower one of two SG-gaps
(phase I), while for \mu<U it joins the sole SG-gap of the half-filling regime
(phase II). We predict scaling behaviour at the continuous half filling
transition. Implications of the half-filling transition between the deeper
insulating phase II and phase I for delocalization due to hopping processes in
itinerant model extensions are discussed and metal-insulator transition
scenarios described.Comment: 29 pages, 26 Figures, 4 jpeg- and 3 gif-Fig-files include