1,942 research outputs found

    Iron loss in permanent-magnet brushless AC machines under maximum torque per ampere and flux weakening control

    Get PDF
    The airgap flux density distribution, flux density loci in the stator core, and the associated iron loss in two topologies of brushless AC motor, having a surface-mounted magnet rotor and an interior-mounted magnet rotor, respectively, are investigated when operated under maximum torque per ampere control in the constant torque mode and maximum power control in the flux-weakening mode. It is shown that whilst the interior magnet topology is known to be eminently suitable for flux-weakening operation, due to its high demagnetization withstand capability, its iron loss can be significantly higher than for a surface-mounted magnet machine

    Calculation of d- and q-axis inductances of PM brushless ac machines accounting for Skew

    Get PDF
    A hybrid two-dimensional (2-D) finite-element/analytical technique is described for predicting the d-axis and q-axis inductances of permanent magnet (PM) brushless ac machines, with due account for the influence of skew. Predicted inductances are compared with measured values for two machines having identical stators, which are skewed by one slot-pitch, but which have different rotor topologies, one having surface-mounted magnets and the other having interior magnets

    Online optimal flux-weakening control of permanent-magnet brushless AC drives

    Get PDF
    An enhanced online optimal control strategy, which maximizes the flux-weakening performance of a brushless AC motor, is described, and applied to motors having different rotor topologies: interior (radial or circumferential), inset, and surface-mounted magnet. It enables the maximum inherent power capability of a brushless AC motor to be achieved independent of any variation in its parameters, and facilitates maximum efficiency over the entire speed range. It also results in good transient dynamic performance, since it is coupled with feedforward vector control based on optimal current profiles

    First Order Sea Clutter Cross Section for HF Hybrid Sky-Surface Wave Radar

    Get PDF
    This paper presents a modified method to simulate the first order sea clutter cross section for high frequency (HF) hybrid sky-surface wave radar, based on the existent model applied in the bistatic HF surface wave radar. The modification focuses on the derivation of Bragg scattering frequency and the ionosphere dispersive impact on the clutter resolution cell. Meanwhile, an analytic expression to calculate the dispersive transfer function is derived on condition that the ionosphere is spherical stratified. Simulation results explicate the variance of the cross section after taking account of the influence triggered by the actual clutter resolution cell, and the spectral width of the first order sea clutter is defined so as to compare the difference. Eventually, experiment results are present to verify the rationality and validity of the proposed method

    Polarization independent InGaAs/lnP chopped quantum well interferometric space switch at 1.55 mum

    Get PDF
    A Mach-Zehnder Interferometric (MZI) space switch using a novel CRE grown InGaAs/InP chopped quantum well (CQW) phase section is presented. Each CQW consists of three 3IA. InGaAs strained quantum wells separated by 12A InP barriers. This structure shows a shift of the absorption edge as high as 80nm at lOV reverse bias. The heavy hole and light hole subbands cross at approximately 0.6% tensile strain. Using these chopped quantum wells, we realized MZ/'s with low attenuation and a V2.l product as low as 3.6 V2.cm. Finally, we realized full polarisation independent switching using 0.75% tensile strained CQW's

    Perturbative Formulation and Non-adiabatic Corrections in Adiabatic Quantum Computing Schemes

    Get PDF
    Adiabatic limit is the presumption of the adiabatic geometric quantum computation and of the adiabatic quantum algorithm. But in reality, the variation speed of the Hamiltonian is finite. Here we develop a general formulation of adiabatic quantum computing, which accurately describes the evolution of the quantum state in a perturbative way, in which the adiabatic limit is the zeroth-order approximation. As an application of this formulation, non-adiabatic correction or error is estimated for several physical implementations of the adiabatic geometric gates. A quantum computing process consisting of many adiabatic gate operations is considered, for which the total non-adiabatic error is found to be about the sum of those of all the gates. This is a useful constraint on the computational power. The formalism is also briefly applied to the adiabatic quantum algorithm.Comment: 5 pages, revtex. some references adde

    Statistical significance of fine structure in the frequency spectrum of Aharonov-Bohm conductance oscillations

    Get PDF
    We discuss a statistical analysis of Aharonov-Bohm conductance oscillations measured in a two-dimensional ring, in the presence of Rashba spin-orbit interaction. Measurements performed at different values of gate voltage are used to calculate the ensemble-averaged modulus of the Fourier spectrum and, at each frequency, the standard deviation associated to the average. This allows us to prove the statistical significance of a splitting that we observe in the h/e peak of the averaged spectrum. Our work illustrates in detail the role of sample specific effects on the frequency spectrum of Aharonov-Bohm conductance oscillations and it demonstrates how fine structures of a different physical origin can be discriminated from sample specific features.Comment: accepted for publication in PR

    Spin-dependent (magneto)transport through a ring due to spin-orbit interaction

    Full text link
    Electron transport through a one-dimensional ring connected with two external leads, in the presence of spin-orbit interaction (SOI) of strength \alpha and a perpendicular magnetic field is studied. Applying Griffith's boundary conditions we derive analytic expressions for the reflection and transmission coefficients of the corresponding one-electron scattering problem. We generalize earlier conductance results by Nitta et al. [Appl. Phys. Lett. 75, 695 (1999)] and investigate the influence of \alpha, temperature, and a weak magnetic field on the conductance. Varying \alpha and temperature changes the position of the minima and maxima of the magnetic-field dependent conductance, and it may even convert a maximum into a minimum and vice versa.Comment: 19 pages, 9 figure

    Disappearance of Ensemble-Averaged Josephson Current in Dirty SNS Junctions of d-wave Superconductors

    Full text link
    We discuss the Josephson current in superconductor / dirty normal conductor / superconductor junctions, where the superconductors have dx2y2d_{x^2-y^2} pairing symmetry. The low-temperature behavior of the Josephson current depends on the orientation angle between the crystalline axis and the normal of the junction interface. We show that the ensemble-averaged Josephson current vanishes when the orientation angle is π/4\pi/4 and the normal conductor is in the diffusive transport regime. The dx2y2d_{x^2-y^2}-wave pairing symmetry is responsible for this fact.Comment: 8 pages, 5 figure

    Optimal control theory for unitary transformations

    Full text link
    The dynamics of a quantum system driven by an external field is well described by a unitary transformation generated by a time dependent Hamiltonian. The inverse problem of finding the field that generates a specific unitary transformation is the subject of study. The unitary transformation which can represent an algorithm in a quantum computation is imposed on a subset of quantum states embedded in a larger Hilbert space. Optimal control theory (OCT) is used to solve the inversion problem irrespective of the initial input state. A unified formalism, based on the Krotov method is developed leading to a new scheme. The schemes are compared for the inversion of a two-qubit Fourier transform using as registers the vibrational levels of the X1Σg+X^1\Sigma^+_g electronic state of Na2_2. Raman-like transitions through the A1Σu+A^1\Sigma^+_u electronic state induce the transitions. Light fields are found that are able to implement the Fourier transform within a picosecond time scale. Such fields can be obtained by pulse-shaping techniques of a femtosecond pulse. Out of the schemes studied the square modulus scheme converges fastest. A study of the implementation of the QQ qubit Fourier transform in the Na2_2 molecule was carried out for up to 5 qubits. The classical computation effort required to obtain the algorithm with a given fidelity is estimated to scale exponentially with the number of levels. The observed moderate scaling of the pulse intensity with the number of qubits in the transformation is rationalized.Comment: 32 pages, 6 figure
    corecore