2,861 research outputs found
Anomalous ferromagnetic spin fluctuations in an antiferromagnetic insulator Pr_{1-x}Ca_{x}MnO_{3}
The high temperature paramagnetic state in an antiferromagnetic (AFM)
insulator Pr_{1-x}Ca_{x}MnO_{3} is characterized by the ferromagnetic (FM) spin
fluctuations with an anomalously small energy scale. The FM fluctuations show a
precipitous decrease of the intensity at the charge ordering temperature
T_{CO}, but persist below T_{CO}, and vanish at the AFM transition temperature
T_{N}. These results demonstrate the importance of the spin ordering for the
complete switching of the FM fluctuation in doped manganites.Comment: REVTeX, 5 pages, 4 figures, submitted to Phys. Rev.
Charge and spin ordering in Nd{1/3}Sr{2/3}FeO{3}
We have investigated the charge and spin ordering in Nd{1/3}Sr{2/3}FeO{3}
with neutron diffraction technique. This sample undergoes a charge ordering
transition accompanying charge disproportionation of 2Fe4+ -> Fe3+ + Fe5+. We
measured the superlattice reflections due to the charge and spin ordering, and
confirmed that charges and spins order simultaneously at Tco = 185 K. The
ordering pattern of charges and spins in this sample can be viewed as three
dimensional stripe order, and is compared with two dimensional stripe order
observed in other transition metal oxides.Comment: REVTeX, 4 pages, 3 figures, to be published in J. Phys. Chem. Solid
Commensurate-Incommensurate transition in the melting process of the orbital ordering in Pr0.5Ca0.5MnO3: neutron diffraction study
The melting process of the orbital order in
Pr0.5Ca0.5MnO3 single crystal has been studied in detail as a function of
temperature by neutron diffraction. It is demonstrated that a
commensurate-incommensurate (C-IC) transition of the orbital ordering takes
place in a bulk sample, being consistent with the electron diffraction studies.
The lattice structure and the transport properties go through drastic changes
in the IC orbital ordering phase below the charge/orbital ordering temperature
Tco/oo, indicating that the anomalies are intimately related to the partial
disordering of the orbital order, unlike the consensus that it is related to
the charge disordering process. For the same T range, partial disorder of the
orbital ordering turns on the ferromagnetic spin fluctuations which were
observed in a previous neutron scattering study.Comment: 5 pages, 2 figures, REVTeX, to be published in Phys. Rev.
Ordering Process and Its Hole Concentration Dependence of the Stripe Order in La{2-x}Sr{x}NiO{4}
Ordering process of stripe order in La{2-x}Sr{x}NiO{4} with x being around
1/3 was investigated by neutron diffraction experiments. When the stripe order
is formed at high temperature, incommensurability \epsilon of the stripe order
has a tendency to show the value close to 1/3 for the samples with x at both
sides of 1/3. With decreasing temperature, however, \epsilon becomes close to
the value determined by the linear relation of \epsilon = n_h, where n_h is a
hole concentration. This variation of the \epsilon strongly affects the
character of the stripe order through the change of the carrier densities in
stripes and antiferromagnetic domains.Comment: 5 pages, 3 figures, REVTeX, to be published in Phys. Rev.
Spin dynamical properties and orbital states of the layered perovskite La_2-2x_Sr_1+2x_Mn_2_O_7 (0.3 <= x < 0.5)
Low-temperature spin dynamics of the double-layered perovskite
La_2-2x_Sr_1+2x_Mn_2_O_7 (LSMO327) was systematically studied in a wide hole
concentration range (0.3 <= x < 0.5). The spin-wave dispersion, which is almost
perfectly 2D, has two branches due to a coupling between layers within a
double-layer. Each branch exhibits a characteristic intensity oscillation along
the out-of-plane direction. We found that the in-plane spin stiffness constant
and the gap between the two branches strongly depend on x. By fitting to
calculated dispersion relations and cross sections assuming Heisenberg models,
we have obtained the in-plane (J_para), intra-bilayer (J_perp) and
inter-bilayer (J') exchange interactions at each x. At x=0.30, J_para=-4meV and
J_perp=-5meV, namely almost isotropic and ferromagnetic. Upon increasing x,
J_perp rapidly approaches zero while |J_para| increases slightly, indicating an
enhancement of the planar magnetic anisotropy. At x=0.48, J_para reaches -9meV,
while J_perp turns to +1meV indicating an antiferromagnetic interaction. Such a
drastic change of the exchange interactions can be ascribed to the change of
the relative stability of the d_x^2-y^2 and d_3z^2-r^2 orbital states upon
doping. However, a simple linear combination of the two states results in an
orbital state with an orthorhombic symmetry, which is inconsistent with the
tetragonal symmetry of the crystal structure. We thus propose that an ``orbital
liquid'' state realizes in LSMO327, where the charge distribution symmetry is
kept tetragonal around each Mn site.Comment: 10 pages including 7 figure
Novel stripe-type charge ordering in the metallic A-type antiferromagnet Pr{0.5}Sr{0.5}MnO{3}
We demonstrate that an A-type antiferromagnetic (AFM) state of
Pr{0.5}Sr{0.5}MnO{3} exhibits a novel charge ordering which governs the
transport property. This charge ordering is stripe-like, being characterized by
a wave vector q ~ (0,0,0.3) with very anisotropic correlation parallel and
perpendicular to the stripe direction. This charge ordering is specific to the
manganites with relatively wide one-electron band width (W) which often exhibit
a metallic A-type AFM state, and should be strictly distinguished from the
CE-type checkerboard-like charge ordering which is commonly observed in
manganites with narrower W such as La{1-x}Ca{x}MnO{3} and Pr{1-x}Ca{x}MnO{3}.Comment: REVTeX4, 5 pages, 4 figure
- …