1,031 research outputs found
High mobility holes in a strained Ge quantum well grown on a thin and relaxed Si0.4Ge0.6/LT-Si0.4Ge0.6/Si(001) virtual
Epitaxial growth of a compressively strained Ge quantum well (QW) on an ultrathin, 345 nm thick, Si0.4Ge0.6/LT-Si0.4Ge0.6/Si(001) virtual substrate (VS) has been demonstrated. The VS, grown with a low temperature Si0.4Ge0.6 seed layer on a Si(001) substrate, is found to be fully relaxed and the Ge QW is fully strained. The temperature dependence of Hall mobility and carrier density clearly indicates a two-dimensional hole gas in the Ge QW. At room temperature, which is more relevant for electronic devices applications, the samples show a very high Hall mobility of 1235 cm2 V−1 s−1 at a carrier density of 2.36×1012 cm−2
3-D Magnetic field analysis by using special elements
Three-dimensional special elements, called the gap element, the expanding element, and the shielding element, have been conceived for discretizing narrow gaps in an iron core, the long legs of a transformer core, and thin shielding plates. The concept of the 3D special element and its finite-element formulation are described. The special elements are applied to several models, and the effects of the elements on accuracy and CPU time are discussed. It is shown that CPU time can be reduced by using the special elements</p
Comparison of different finite elements for 3-D eddy current analysis
In order to evaluate the best type of element for the finite-element analysis of 3-D eddy currents, a fundamental model is analyzed using the usual first-order tetrahedral, triangular prism, and brick nodal elements, and also the brick edge element. The effects of the types of elements on the flux and eddy-current distributions are investigated using the A-φ method and the T-Ω method. It is concluded that the brick edge element is best from the viewpoints of accuracy and CPU time</p
Hole density dependence of effective mass, mobility and transport time in strained Ge channel modulation-doped heterostructures
We performed systematic low-temperature (T = 350 mK–15 K) magnetotransport measurements on the two-dimensional hole gas with various sheet carrier densities Ps = (0.57–2.1)×1012 cm–2 formed in the strained Ge channel modulation-doped (MOD) SiGe heterostructures grown on Si substrates. It was found that the effective hole mass deduced by temperature dependent Shubnikov–de Hass oscillations increased monotonically from (0.087±0.05)m0 to (0.19±0.01)m0 with the increase of Ps, showing large band nonparabolicity in strained Ge. In contrast to this result, the increase of the mobility with increasing Ps (up to 29 000 cm2/V s) was observed, suggesting that Coulomb scattering played a dominant role in the transport of the Ge channel at low temperatures. In addition, the Dingle ratio of the transport time to the quantum lifetime was found to increase with increasing Ps, which was attributed to the increase of remote impurity scattering with the increase of the doping concentration in MOD SiGe layers
Charge-noise-free Lateral Quantum Dot Devices with Undoped Si/SiGe Wafer
We develop quantum dots in a single layered MOS structure using an undoped
Si/SiGe wafer. By applying a positive bias on the surface gates, electrons are
accumulated in the Si channel. Clear Coulomb diamond and double dot charge
stability diagrams are measured. The temporal fluctuation of the current is
traced, to which we apply the Fourier transform analysis. The power spectrum of
the noise signal is inversely proportional to the frequency, and is different
from the inversely quadratic behavior known for quantum dots made in doped
wafers. Our results indicate that the source of charge noise for the doped
wafers is related to the 2DEG dopant.Comment: Proceedings of the 12th Asia Pacific Physics Conferenc
Extremely high room-temperature two-dimensional hole gas mobility in Ge/Si0.33Ge0.67/Si(001) p-type modulation-doped heterostructures
To extract the room-temperature drift mobility and sheet carrier density of two-dimensional hole gas (2DHG) that form in Ge strained channels of various thicknesses in Ge/Si0.33Ge0.67/Si(001) p-type modulation-doped heterostructures, the magnetic field dependences of the magnetoresistance and Hall resistance at temperature of 295 K were measured and the technique of maximum entropy mobility spectrum analysis was applied. This technique allows a unique determination of mobility and sheet carrier density of each group of carriers present in parallel conducting multilayers semiconductor heterostructures. Extremely high room-temperature drift mobility (at sheet carrier density) of 2DHG 2940 cm2 V–1 s–1 (5.11×1011 cm–2) was obtained in a sample with a 20 nm thick Ge strained channel
Metal-Insulator Transition and Spin Degree of Freedom in Silicon 2D Electron Systems
Magnetotransport in 2DES's formed in Si-MOSFET's and Si/SiGe quantum wells at
low temperatures is reported. Metallic temperature dependence of resistivity is
observed for the n-Si/SiGe sample even in a parallel magnetic field of 9T,
where the spins of electrons are expected to be polarized completely.
Correlation between the spin polarization and minima in the diagonal
resistivity observed by rotating the samples for various total strength of the
magnetic field is also investigated.Comment: 3 pages, RevTeX, 4 eps-figures, conference paper (EP2DS-13
Electrical Detection and Magnetic-Field Control of Spin States in Phosphorus-Doped Silicon
Electron paramagnetic resonance of ensembles of phosphorus donors in silicon
has been detected electrically with externally applied magnetic fields lower
than 200 G. Because the spin Hamiltonian was dominated by the contact hyperfine
term rather than by the Zeeman terms at such low magnetic fields, superposition
states and
were formed
between phosphorus electron and nuclear spins, and electron paramagnetic
resonance transitions between these superposition states and or states are observed clearly. A
continuous change of and with the magnetic field was
observed with a behavior fully consistent with theory of phosphorus donors in
silicon.Comment: 6 pages, 5 figure
Heavy-Mass Behavior of Ordered Perovskites ACu3Ru4O12 (A = Na, Ca, La)
We synthesized ACu3Ru4O12 (A = Na, Na0.5Ca0.5, Ca, Ca0.5La0.5, La) and
measured their DC magnetization, AC susceptibility, specific heat, and
resistivity, in order to investigate the effects of the hetero-valent
substitution. A broad peak in the DC magnetization around 200 K was observed
only in CaCu3Ru4O12, suggesting the Kondo effect due to localized Cu2+ ions.
However, the electronic specific heat coefficients exhibit large values not
only for CaCu3Ru4O12 but also for all the other samples. Moreover, the Wilson
ratio and the Kadowaki-Woods ratio of our samples are all similar to the values
of other heavy-fermion compounds. These results question the Kondo effect as
the dominant origin of the mass enhancement, and rather indicate the importance
of correlations among itinerant Ru electrons.Comment: 6 pages, 6 figures, to be published in J. Phys. Soc. Jp
- …