59 research outputs found
PyCOOL - a Cosmological Object-Oriented Lattice code written in Python
There are a number of different phenomena in the early universe that have to
be studied numerically with lattice simulations. This paper presents a graphics
processing unit (GPU) accelerated Python program called PyCOOL that solves the
evolution of scalar fields in a lattice with very precise symplectic
integrators. The program has been written with the intention to hit a sweet
spot of speed, accuracy and user friendliness. This has been achieved by using
the Python language with the PyCUDA interface to make a program that is easy to
adapt to different scalar field models. In this paper we derive the symplectic
dynamics that govern the evolution of the system and then present the
implementation of the program in Python and PyCUDA. The functionality of the
program is tested in a chaotic inflation preheating model, a single field
oscillon case and in a supersymmetric curvaton model which leads to Q-ball
production. We have also compared the performance of a consumer graphics card
to a professional Tesla compute card in these simulations. We find that the
program is not only accurate but also very fast. To further increase the
usefulness of the program we have equipped it with numerous post-processing
functions that provide useful information about the cosmological model. These
include various spectra and statistics of the fields. The program can be
additionally used to calculate the generated curvature perturbation. The
program is publicly available under GNU General Public License at
https://github.com/jtksai/PyCOOL . Some additional information can be found
from http://www.physics.utu.fi/tiedostot/theory/particlecosmology/pycool/ .Comment: 23 pages, 12 figures; some typos correcte
Instabilities and Mixing in SN 1993J
Rayleigh-Taylor (R-T) instabilities in the explosion of SN 1993J are
investigated by means of two-dimensional hydrodynamical simulations. It is
found that the extent of mixing is sensitive to the progenitor's core mass and
the envelope mass. Because the helium core mass (3 - 4 \ms) is smaller than
that of SN 1987A, R-T instabilities at the He/C+O interfaces develop to induce
a large scale mixing in the helium core, while the instability is relatively
weak at the H/He interface due to the small envelope mass. The predicted
abundance distribution, in particular the amount of the \ni~ mixing, is
compared with those required in the theoretical light curves and the late time
optical spectra. This enables us to specify the progenitor of SN 1993J in some
detail.Comment: 20 pages, LaTeX (AASTeX), to appear in Ap
Intra-arterial induction high-dose chemotherapy with cisplatin for oral and oropharyngeal cancer: long-term results
Intra-arterial (IA) chemotherapy for curative treatment of head and neck cancer experienced a revival in the last decade. Mainly, it was used in concurrent combination with radiation in organ-preserving settings. The modern method of transfemoral approach for catheterisation, superselective perfusion of the tumour-feeding vessel, and high-dose (150 mg m−2) administration of cisplatin with parallel systemic neutralisation with sodium thiosulphate (9 g m−2) made preoperative usage feasible. The present paper presents the results of a pilot study on a population of 52 patients with resectable stage 1–4 carcinomas of the oral cavity and the oropharynx, who were treated with one cycle of preoperative IA chemotherapy executed as mentioned above and radical surgery. There have been no interventional complications of IA chemotherapy, and acute side effects have been low. One tracheotomy had to be carried out due to swelling. The overall clinical local response has been 69%. There was no interference with surgery, which was carried out 3–4 weeks later. Pathological complete remission was assessed in 25%. The mean observation time was 3 years. A 3-year overall and disease-free survival was 82 and 69%, respectively, and at 5 years 77 and 59%, respectively. Survival results were compared to a treatment-dependent prognosis index for the same population. As a conclusion, it can be stated that IA high-dose chemotherapy with cisplatin and systemic neutralisation in a neoadjuvant setting should be considered a feasible, safe, and effective treatment modality for resectable oral and oropharyngeal cancer. The low toxicity of this local chemotherapy recommends usage especially in stage 1–2 patients. The potential of survival benefit as indicated by the comparison to the prognosis index should be controlled in a randomised study
The Interferon Response Inhibits HIV Particle Production by Induction of TRIM22
Treatment of human cells with Type 1 interferons restricts HIV replication. Here we report that the tripartite motif protein TRIM22 is a key mediator. We used transcriptional profiling to identify cellular genes that were induced by interferon treatment and identified TRIM22 as one of the most strongly up-regulated genes. We confirmed, as in previous studies, that TRIM22 over-expression inhibited HIV replication. To assess the role of TRIM22 expressed under natural inducing conditions, we compared the effects of interferon in cells depleted for TRIM22 using RNAi and found that HIV particle release was significantly increased in the knockdown, implying that TRIM22 acts as a natural antiviral effector. Further studies showed that TRIM22 inhibited budding of virus-like particles containing Gag only, indicating that Gag was the target of TRIM22. TRIM22 did not block the release of MLV or EIAV Gag particles. Inhibition was associated with diffuse cytoplasmic staining of HIV Gag rather than accumulation at the plasma membrane, suggesting TRIM22 disrupts proper trafficking. Mutational analyses of TRIM22 showed that the catalytic amino acids Cys15 and Cys18 of the RING domain are required for TRIM22 antiviral activity. These data disclose a pathway by which Type 1 interferons obstruct HIV replication
Ouabain Stimulates a Na+/K+-ATPase-Mediated SFK-Activated Signalling Pathway That Regulates Tight Junction Function in the Mouse Blastocyst
The Na+/K+-ATPase plays a pivotal role during preimplantation development; it establishes a trans-epithelial ionic gradient that facilitates the formation of the fluid-filled blastocyst cavity, crucial for implantation and successful pregnancy. The Na+/K+-ATPase is also implicated in regulating tight junctions and cardiotonic steroid (CTS)-induced signal transduction via SRC. We investigated the expression of SRC family kinase (SFK) members, Src and Yes, during preimplantation development and determined whether SFK activity is required for blastocyst formation. Embryos were collected following super-ovulation of CD1 or MF1 female mice. RT-PCR was used to detect SFK mRNAs encoding Src and Yes throughout preimplantation development. SRC and YES protein were localized throughout preimplantation development. Treatment of mouse morulae with the SFK inhibitors PP2 and SU6656 for 18 hours resulted in a reversible blockade of progression to the blastocyst stage. Blastocysts treated with 10−3 M ouabain for 2 or 10 minutes and immediately immunostained for phosphorylation at SRC tyr418 displayed reduced phosphorylation while in contrast blastocysts treated with 10−4 M displayed increased tyr418 fluorescence. SFK inhibition increased and SFK activation reduced trophectoderm tight junction permeability in blastocysts. The results demonstrate that SFKs are expressed during preimplantation development and that SFK activity is required for blastocyst formation and is an important mediator of trophectoderm tight junction permeability
Divergent Cortical Generators of MEG and EEG during Human Sleep Spindles Suggested by Distributed Source Modeling
Background: Sleep spindles are,1-second bursts of 10–15 Hz activity, occurring during normal stage 2 sleep. In animals, sleep spindles can be synchronous across multiple cortical and thalamic locations, suggesting a distributed stable phaselocked generating system. The high synchrony of spindles across scalp EEG sites suggests that this may also be true in humans. However, prior MEG studies suggest multiple and varying generators. Methodology/Principal Findings: We recorded 306 channels of MEG simultaneously with 60 channels of EEG during naturally occurring spindles of stage 2 sleep in 7 healthy subjects. High-resolution structural MRI was obtained in each subject, to define the shells for a boundary element forward solution and to reconstruct the cortex providing the solution space for a noise-normalized minimum norm source estimation procedure. Integrated across the entire duration of all spindles, sources estimated from EEG and MEG are similar, diffuse and widespread, including all lobes from both hemispheres. However, the locations, phase and amplitude of sources simultaneously estimated from MEG versus EEG are highly distinct during the same spindles. Specifically, the sources estimated from EEG are highly synchronous across the cortex, whereas those from MEG rapidly shift in phase, hemisphere, and the location within the hemisphere. Conclusions/Significance: The heterogeneity of MEG sources implies that multiple generators are active during huma
- …