37,695 research outputs found

    Pressure Dependence of Wall Relaxation in Polarized 3^3He Gaseous Cells

    Full text link
    We have observed a linear pressure dependence of longitudinal relaxation time (T1T_1) at 4.2 K and 295 K in gaseous 3^3He cells made of either bare pyrex glass or Cs/Rb-coated pyrex due to paramagnetic sites in the cell wall. The paramagnetic wall relaxation is previously thought to be independent of 3^3He pressure. We develop a model to interpret the observed wall relaxation by taking into account the diffusion process, and our model gives a good description of the data

    Pore-scale dynamics and the multiphase Darcy law

    No full text
    Synchrotron x-ray microtomography combined with sensitive pressure differential measurements were used to study flow during steady-state injection of equal volume fractions of two immiscible fluids of similar viscosity through a 57-mm-long porous sandstone sample for a wide range of flow rates. We found three flow regimes. (1) At low capillary numbers, Ca, representing the balance of viscous to capillary forces, the pressure gradient, ∇ P , across the sample was stable and proportional to the flow rate (total Darcy flux) q t (and hence capillary number), confirming the traditional conceptual picture of fixed multiphase flow pathways in porous media. (2) Beyond Ca ∗ ≈ 10 − 6 , pressure fluctuations were observed, while retaining a linear dependence between flow rate and pressure gradient for the same fractional flow. (3) Above a critical value Ca > Ca i ≈ 10 − 5 we observed a power-law dependence with ∇ P ∼ q a t with a ≈ 0.6 associated with rapid fluctuations of the pressure differential of a magnitude equal to the capillary pressure. At the pore scale a transient or intermittent occupancy of portions of the pore space was captured, where locally flow paths were opened to increase the conductivity of the phases. We quantify the amount of this intermittent flow and identify the onset of rapid pore-space rearrangements as the point when the Darcy law becomes nonlinear. We suggest an empirical form of the multiphase Darcy law applicable for all flow rates, consistent with the experimental results

    Out of plane effect on the superconductivity of Sr2-xBaxCuO3+y with Tc up to 98K

    Full text link
    A series of new Sr2-xBaxCuO3+y (0 x 0.6) superconductors were prepared using high-pressure and high-temperature synthesis. A Rietveld refinement based on powder x-ray diffraction confirms that the superconductors crystallize in the K2NiF4-type structure of a space group I4/mmm similar to that of La2CuO4 but with partially occupied apical oxygen sites. It is found that the superconducting transition temperature Tc of this Ba substituted Sr2CuO3+y superconductor with constant carrier doping level, i.e., constant d, is controlled not only by order/disorder of apical-O atoms but also by Ba content. Tcmax =98 K is achieved in the material with x=0.6 that reaches the record value of Tc among the single-layer copper oxide superconductors, and is higher than Tc=95K of Sr2CuO3+y with optimally ordered apical-O atoms. There is Sr-site disorder in Sr2-xBaxCuO3+y which might lead to a reduction of Tc. The result indicates that another effect surpasses the disorder effect that is related either to the increased in-plane Cu-O bond length or to elongated apical-O distance due to Ba substitution with larger cation size. The present experiment demonstrates that the optimization of local geometry out of the Cu-O plane can dramatically enhance Tc in the cuprate superconductors.Comment: 23 Pages, 1 Table, 5 Figure

    Quantum broadcast communication

    Get PDF
    Broadcast encryption allows the sender to securely distribute his/her secret to a dynamically changing group of users over a broadcast channel. In this paper, we just consider a simple broadcast communication task in quantum scenario, which the central party broadcasts his secret to multi-receiver via quantum channel. We present three quantum broadcast communication schemes. The first scheme utilizes entanglement swapping and Greenberger-Horne-Zeilinger state to realize a task that the central party broadcasts his secret to a group of receivers who share a group key with him. In the second scheme, based on dense coding, the central party broadcasts the secret to multi-receiver who share each of their authentication key with him. The third scheme is a quantum broadcast communication scheme with quantum encryption, which the central party can broadcast the secret to any subset of the legal receivers
    • …
    corecore