2 research outputs found

    Variations in mineralogy of dust in an ice core obtained from northwestern Greenland over the past 100 years

    Get PDF
    Our study is the first to demonstrate a high-temporal-resolution record of mineral composition in a Greenland ice core over the past 100 years. To reconstruct past variations in the sources and transportation processes of mineral dust in northwestern Greenland, we analysed the morphology and mineralogical composition of dust in the SIGMA-D ice core from 1915 to 2013 using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The results revealed that the ice core dust consisted mainly of silicate minerals and that the composition varied substantially on multi-decadal and inter-decadal scales, suggesting that the ice core minerals originated from different geological sources in different periods during the past 100 years. The multi-decadal variation trend differed among mineral types. Kaolinite, which generally formed in warm and humid climatic zones, was abundant in colder periods (1950–2004), whereas mica, chlorite, feldspars, mafic minerals, and quartz, which formed in arid, high-latitude, and local areas, were abundant in warmer periods (1915–1949 and 2005–2013). Comparison to Greenland surface temperature records indicates that multi-decadal variation in the relative abundance of these minerals was likely affected by local temperature changes in Greenland. Trajectory analysis shows that the minerals were transported mainly from the western coast of Greenland in the two warming periods, which was likely due to an increase in dust sourced from local ice-free areas as a result of shorter snow/ice cover duration in the Greenland coastal region during the melt season caused by recent warming. Meanwhile, ancient deposits in northern Canada, which were formed in past warmer climates, seem to be the best candidate during the colder period (1950–2004). Our results suggest that SEM–EDS analysis can detect variations in ice core dust sources during recent periods of low dust concentration.</p

    Influence of the melting temperature on the measurement of the mass concentration and size distribution of black carbon in snow

    No full text
    The influence of temperature and time of snow sample melting on the measurement of mass concentration and size distribution of black carbon (BC) in snow was evaluated experimentally. In the experiments, fresh (Shirouma) and aged (Hakusan) snow samples were melted at different temperatures or at different time lengths, and the BC mass concentration and size distribution in the melted snow samples were measured using a nebulizer and a single-particle soot photometer (SP2). In the experiment where melting temperature was varied, the BC mass concentration in the liquid decreased at a melting temperature of 70 °C. This decrease was 8.0 % for the Shirouma sample and 46.4 % for the Hakusan sample and depended on BC particle size, with a significant decrease found at BC diameters less than 350 nm. A similar decrease in BC mass concentration was found when the Hakusan snow sample that had been melted at 5 °C was heated to 70 °C. The experiment in which melting time was varied indicated that BC mass concentration in the liquid did not change for the Shirouma sample but decreased significantly with a longer melting time for the Hakusan sample (38.6 %). These results indicate that melting of snow samples at high temperatures or over long time periods can significantly affect the measurement of BC mass and its size distribution, especially for aged snow samples
    corecore