2,720 research outputs found
Dynamical approach to heavy-ion induced fission using actinide target nuclei at energies around the Coulomb barrier
In order to describe heavy-ion fusion reactions around the Coulomb barrier
with an actinide target nucleus, we propose a model which combines the
coupled-channels approach and a fluctuation-dissipation model for dynamical
calculations. This model takes into account couplings to the collective states
of the interacting nuclei in the penetration of the Coulomb barrier and the
subsequent dynamical evolution of a nuclear shape from the contact
configuration. In the fluctuation-dissipation model with a Langevin equation,
the effect of nuclear orientation at the initial impact on the prolately
deformed target nucleus is considered. Fusion-fission, quasi-fission and deep
quasi-fission are separated as different Langevin trajectories on the potential
energy surface. Using this model, we analyze the experimental data for the mass
distribution of fission fragments (MDFF) in the reactions of
S+U and Si+U at several incident energies
around the Coulomb barrier. We find that the time scale in the quasi-fission as
well as the deformation of fission fragments at the scission point are
different between the Si+U and S+U systems,
causing different mass asymmetries of the quasi-fission.Comment: 11 figure
Quasi-Particle Spectra, Charge-Density-Wave, Superconductivity and Electron-Phonon Coupling in 2H-NbSe2
High-resolution photoemission has been used to study the electronic structure
of the charge density wave (CDW) and superconducting (SC) dichalcogenide, 2H-
NbSe2. From the extracted self-energies, important components of the
quasiparticle (QP) interactions have been identified. In contrast to previously
studied TaSe2, the CDW transition does not affect the electronic properties
significantly. The electron-phonon coupling is identified as a dominant
contribution to the QP self-energy and is shown to be very anisotropic
(k-dependent) and much stronger than in TaSe2.Comment: 4 pages, 3 figures, minor changes, to appear in PR
Electric-field-induced lifting of the valley degeneracy in alpha-(BEDT-TTF)_2I_3 Dirac-like Landau levels
The relativistic Landau levels in the layered organic material
alpha-(BEDT-TTF)_2I_3 [BEDT-TTF=bis(ethylenedithio)tetrathiafulvalene] are
sensitive to the tilt of the Dirac cones, which, as in the case of graphene,
determine the low-energy electronic properties under appropriate pressure. We
show that an applied inplane electric field, which happens to be in competition
with the tilt of the cones, lifts the twofold valley degeneracy due to a
different level spacing. The scenario may be tested in infrared transmission
spectroscopy.Comment: 4 pages, 1 figure; version with minor corrections published in EP
- …