372 research outputs found

    Direct evaluation of pure graph state entanglement

    Full text link
    We address the question of quantifying entanglement in pure graph states. Evaluation of multipartite entanglement measures is extremely hard for most pure quantum states. In this paper we demonstrate how solving one problem in graph theory, namely the identification of maximum independent set, allows us to evaluate three multipartite entanglement measures for pure graph states. We construct the minimal linear decomposition into product states for a large group of pure graph states, allowing us to evaluate the Schmidt measure. Furthermore we show that computation of distance-like measures such as relative entropy of entanglement and geometric measure becomes tractable for these states by explicit construction of closest separable and closest product states respectively. We show how these separable states can be described using stabiliser formalism as well as PEPs-like construction. Finally we discuss the way in which introducing noise to the system can optimally destroy entanglement.Comment: 23 pages, 9 figure

    Learning more with less: Conditional PGGAN-based data augmentation for brain metastases detection using highly-rough annotation on MR images

    Get PDF
    Accurate Computer-Assisted Diagnosis, associated with proper data wrangling, can alleviate the risk of overlooking the diagnosis in a clinical environment. Towards this, as a Data Augmentation (DA) technique, Generative Adversarial Networks (GANs) can synthesize additional training data to handle the small/fragmented medical imaging datasets collected from various scanners; those images are realistic but completely different from the original ones, filling the data lack in the real image distribution. However, we cannot easily use them to locate disease areas, considering expert physicians' expensive annotation cost. Therefore, this paper proposes Conditional Progressive Growing of GANs (CPGGANs), incorporating highly-rough bounding box conditions incrementally into PGGANs to place brain metastases at desired positions/sizes on 256 X 256 Magnetic Resonance (MR) images, for Convolutional Neural Network-based tumor detection; this first GAN-based medical DA using automatic bounding box annotation improves the training robustness. The results show that CPGGAN-based DA can boost 10% sensitivity in diagnosis with clinically acceptable additional False Positives. Surprisingly, further tumor realism, achieved with additional normal brain MR images for CPGGAN training, does not contribute to detection performance, while even three physicians cannot accurately distinguish them from the real ones in Visual Turing Test.Comment: 9 pages, 7 figures, accepted to CIKM 2019 (acceptance rate: 19%

    Diagonal-unitary 2-designs and their implementations by quantum circuits

    Full text link
    We study efficient generations of random diagonal-unitary matrices, an ensemble of unitary matrices diagonal in a given basis with randomly distributed phases for their eigenvalues. Despite the simple algebraic structure, they cannot be achieved by quantum circuits composed of a few-qubit diagonal gates. We introduce diagonal-unitary tt-designs and present two quantum circuits that implement diagonal-unitary 22-designs with the computational basis in NN-qubit systems. One is composed of single-qubit diagonal gates and controlled-phase gates with randomized phases, which achieves an exact diagonal-unitary 22-design after applying the gates on all pairs of qubits. The number of required gates is N(N1)/2N(N-1)/2. If the controlled-Z gates are used instead of the controlled-phase gates, the circuit cannot achieve an exact 22-design, but achieves an ϵ\epsilon-approximate 22-design by applying gates on randomly selected pairs of qubits. Due to the random choice of pairs, the circuit obtains extra randomness and the required number of gates is at most O(N2(N+log1/ϵ))O(N^2(N+\log1/\epsilon)). We also provide an application of the circuits, a protocol of generating an exact 22-design of random states by combining the circuits with a simple classical procedure requiring O(N)O(N) random classical bits.Comment: Revised, 22 pages + Appendix, 3 figures; major revision from v2; presentation is improved in v4; v5 is a published versio

    On quantum teleportation with beam-splitter-generated entanglement

    Get PDF
    Following the lead of Cochrane, Milburn, and Munro [Phys. Rev. A {\bf 62}, 062307 (2000)], we investigate theoretically quantum teleportation by means of the number-sum and phase-difference variables. We study Fock-state entanglement generated by a beam splitter and show that two-mode Fock-state inputs can be entangled by a beam splitter into close approximations of maximally entangled eigenstates of the phase difference and the photon-number sum (Einstein-Podolsky-Rosen -- EPR -- states). Such states could be experimentally feasible with on-demand single-photon sources. We show that the teleportation fidelity can reach near unity when such ``quasi-EPR'' states are used as the quantum channel.Comment: 7 pages (two-column), 7 figures, submitted to Phys. Rev. A. Text unmodified, postscript error correcte

    Entangled state preparation via dissipation-assisted adiabatic passages

    Full text link
    The main obstacle for coherent control of open quantum systems is decoherence due to different dissipation channels and the inability to precisely control experimental parameters. To overcome these problems we propose to use dissipation-assisted adiabatic passages. These are relatively fast processes where the presence of spontaneous decay rates corrects for errors due to non-adiabaticity while the system remains in a decoherence-free state and behaves as predicted for an adiabatic passage. As a concrete example we present a scheme to entangle atoms by moving them in and out of an optical cavity.Comment: 11 pages, 7 figures, minor changes, accepted for publication in Phys. Rev.

    Generation of maximum spin entanglement induced by cavity field in quantum-dot systems

    Full text link
    Equivalent-neighbor interactions of the conduction-band electron spins of quantum dots in the model of Imamoglu et al. [Phys. Rev. Lett. 83, 4204 (1999)] are analyzed. Analytical solution and its Schmidt decomposition are found and applied to evaluate how much the initially excited dots can be entangled to the remaining dots if all of them are initially disentangled. It is demonstrated that the perfect maximally entangled states (MES) can only be generated in the systems of up to 6 dots with a single dot initially excited. It is also shown that highly entangled states, approximating the MES with a good accuracy, can still be generated in systems of odd number of dots with almost half of them being excited. A sudden decrease of entanglement is observed by increasing the total number of dots in a system with a fixed number of excitations.Comment: 6 pages, 7 figures, to appear in Phys. Rev.

    Engineering arbitrary motional ionic state through realistic intensity-fluctuating laser pulses

    Full text link
    We present a reliable scheme for engineering arbitrary motional ionic states through an adaptation of the projection synthesis technique for trapped-ion phenomena. Starting from a prepared coherent motional state, the Wigner function of the desired state is thus sculpted from a Gaussian distribution. The engineering process has also been developed to take into account the errors arising from intensity fluctuations in the exciting-laser pulses required for manipulating the electronic and vibrational states of the trapped ion. To this end, a recently developed phenomenological-operator approach that allows for the influence of noise will be applied. This approach furnishes a straightforward technique to estimate the fidelity of the prepared state in the presence of errors, precluding the usual extensive ab initio calculations. The results obtained here by the phenomenological approach, to account for the effects of noise in our engineering scheme, can be directly applied to any other process involving trapped-ion phenomena.Comment: more information at http://www.df.ufscar.br/~quantum
    corecore