27 research outputs found

    Recruitment of the Major Vault Protein by InlK: A Listeria monocytogenes Strategy to Avoid Autophagy

    Get PDF
    L. monocytogenes is a facultative intracellular bacterium responsible for listeriosis. It is able to invade, survive and replicate in phagocytic and non-phagocytic cells. The infectious process at the cellular level has been extensively studied and many virulence factors have been identified. Yet, the role of InlK, a member of the internalin family specific to L. monocytogenes, remains unknown. Here, we first show using deletion analysis and in vivo infection, that InlK is a bona fide virulence factor, poorly expressed in vitro and well expressed in vivo, and that it is anchored to the bacterial surface by sortase A. We then demonstrate by a yeast two hybrid screen using InlK as a bait, validated by pulldown experiments and immunofluorescence analysis that intracytosolic bacteria via an interaction with the protein InlK interact with the Major Vault Protein (MVP), the main component of cytoplasmic ribonucleoproteic particules named vaults. Although vaults have been implicated in several cellular processes, their role has remained elusive. Our analysis demonstrates that MVP recruitment disguises intracytosolic bacteria from autophagic recognition, leading to an increased survival rate of InlK over-expressing bacteria compared to InlK− bacteria. Together these results reveal that MVP is hijacked by L. monocytogenes in order to counteract the autophagy process, a finding that could have major implications in deciphering the cellular role of vault particles

    Novel CCL21-Vault Nanocapsule Intratumoral Delivery Inhibits Lung Cancer Growth

    Get PDF
    Based on our preclinical findings, we are assessing the efficacy of intratumoral injection of dendritic cells (DC) transduced with an adenoviral vector expressing the secondary lymphoid chemokine (CCL21) gene (Ad-CCL21-DC) in a phase I trial in advanced non-small cell lung cancer (NSCLC). While this approach shows immune enhancement, the preparation of autologous DC for CCL21 genetic modification is cumbersome, expensive and time consuming. We are evaluating a non-DC based approach which utilizes vault nanoparticles for intratumoral CCL21 delivery to mediate antitumor activity in lung cancer.Here we describe that vault nanocapsule platform for CCL21 delivery elicits antitumor activity with inhibition of lung cancer growth. Vault nanocapsule packaged CCL21 (CCL21-vaults) demonstrated functional activity in chemotactic and antigen presenting activity assays. Recombinant vaults impacted chemotactic migration of T cells and this effect was predominantly CCL21 dependent as CCL21 neutralization abrogated the CCL21 mediated enhancement in chemotaxis. Intratumoral administration of CCL21-vaults in mice bearing lung cancer enhanced leukocytic infiltrates (CXCR3(+)T, CCR7(+)T, IFNγ(+)T lymphocytes, DEC205(+) DC), inhibited lung cancer tumor growth and reduced the frequencies of immune suppressive cells [myeloid derived suppressor cells (MDSC), T regulatory cells (Treg), IL-10 T cells]. CCL21-vaults induced systemic antitumor responses by augmenting splenic T cell lytic activity against parental tumor cells.This study demonstrates that the vault nanocapsule can efficiently deliver CCL21 to sustain antitumor activity and inhibit lung cancer growth. The vault nanocapsule can serve as an "off the shelf" approach to deliver antitumor cytokines to treat a broad range of malignancies

    Engineering of vault nanocapsules with enzymatic and fluorescent properties

    No full text
    One of the central issues facing the emerging field of nanotechnology is cellular compatibility. Nanoparticles have been proposed for diagnostic and therapeutic applications, including drug delivery, gene therapy, biological sensors, and controlled catalysis. Viruses, liposomes, peptides, and synthetic and natural polymers have been engineered for these applications, yet significant limitations continue to prevent their use. Avoidance of the body's natural immune system, lack of targeting specificity, and the inability to control packaging and release are remaining obstacles. We have explored the use of a naturally occurring cellular nanoparticle known as the vault, which is named for its morphology with multiple arches reminiscent of cathedral ceilings. Vaults are 13-MDa ribonucleoprotein particles with an internal cavity large enough to sequester hundreds of proteins. Here, we report a strategy to target and sequester biologically active materials within the vault cavity. Attachment of a vault-targeting peptide to two proteins, luciferase and a variant of GFP, resulted in their sequestration within the vault cavity. The targeted proteins confer enzymatic and fluorescent properties on the recombinant vaults, both of which can be detected by their emission of light. The modified vaults are compatible with living cells. The ability to engineer vault particles with designed properties and functionalities represents an important step toward development of a biocompatible nanocapsule

    The effects of CD40- and interleukin (IL-4)-activated CD23+ cells on the production of IL-10 by mononuclear cells in Graves’ disease: the role of CD8+ cells

    No full text
    The possible roles of CD8+ cells in the abnormal T cell-dependent B-cell activation in Graves’ disease were investigated by analysing lymphocyte subsets in peripheral blood mononuclear cells (PBMC) and their production of soluble factors and cytokines such as IL-10 in patients with Graves’ disease, Hashimoto’s thyroiditis and normal controls. The PBMC were separated into CD8+ and CD8-depleted cells by magnetic separation columns, and cultured for 7 days with or without anti-CD40 monoclonal antibodies and IL-4. The culture supernatant was assayed for sCD23 and IL-10 using EIA, and the remaining cells were analysed by flow cytometry. Stimulation with anti-CD40 antibody together with IL-4 increased sCD23 levels and the number of CD23+ cells. The latter was further augmented by depletion of CD8+ cells. This combination of B cell stimulants increased production of IL-10 by PBMC from patients with Graves’ disease. The CD40- and IL-4-activated production of IL-10 was decreased by CD8+ cell depletion. In contrast, constitutive production of IL-10 was increased after CD8+ cell depletion in a group of patients with low basal secretion levels (<35 ng/ml). It was, however, decreased in a group with higher basal production levels, but such a relationship was not found in the normal control group. Thus, T cell-dependent B-cell activation via a CD40 pathway activates CD23+ cells, leading to over-production of IL-10 and a shift of the Th1/Th2 balance to Th2 dominance, while CD8+ cells may suppress this activation to counteract the Th2 deviation in Graves’ disease

    Solution Structures of Engineered Vault Particles

    No full text
    Prior crystal structures of the vault have provided clues of its structural variability but are non-conclusive due to crystal packing. Here, we obtained vaults by engineering at the N terminus of rat major vault protein (MVP) an HIV-1 Gag protein segment and determined their near-atomic resolution (∼4.8&nbsp;Å) structures in a solution/non-crystalline environment. The barrel-shaped vaults in solution adopt two conformations, 1 and 2, both with D39 symmetry. From the N to C termini, each MVP monomer has three regions: body, shoulder, and cap. While conformation 1 is identical to one of the crystal structures, the shoulder in conformation 2 is translocated longitudinally up to 10&nbsp;Å, resulting in an outward-projected cap. Our structures clarify the structural discrepancies in the body region in the prior crystallography models. The vault's drug-delivery potential is highlighted by the internal disposition and structural flexibility of its Gag-loaded N-terminal extension at the barrel waist of the engineered vault
    corecore