5,684 research outputs found
Density functional calculations of the electronic structure and magnetic properties of the hydrocarbon K3picene superconductor near the metal-insulator transition
We have investigated the electronic structures and magnetic properties of of
K3picene, which is a first hydrocarbon superconductor with high transition
temperature T_c=18K. We have shown that the metal-insulator transition (MIT) is
driven in K3picene by 5% volume enhancement with a formation of local magnetic
moment. Active bands for superconductivity near the Fermi level E_F are found
to have hybridized character of LUMO and LUMO+1 picene molecular orbitals.
Fermi surfaces of K3picene manifest neither prominent nesting feature nor
marked two-dimensional behavior. By estimating the ratio of the Coulomb
interaction U and the band width W of the active bands near E_F, U/W, we have
demonstrated that K3picene is located in the vicinity of the Mott transition.Comment: 5 pages, 5 figure
Two-Temperature Intracluster Medium in Merging Clusters of Galaxies
We investigate the evolution of intracluster medium during a cluster merger,
explicitly considering the relaxation process between the ions and electrons by
N-body and hydrodynamical simulations. When two subclusters collide each other,
a bow shock is formed between the centers of two substructures and propagate in
both directions along the collision axis. The shock primarily heats the ions
because the kinetic energy of an ion entering the shock is larger than that of
an electron by the ratio of masses. In the post-shock region the energy is
transported from the ions to electrons via Coulomb coupling. However, since the
energy exchange timescale depends both on the gas density and temperature,
distribution of electron temperature becomes more complex than that of the
plasma mean temperature, especially in the expanding phase. After the collision
of two subclusters, gas outflow occurs not only along the collision axis but
also in its perpendicular direction. The gas which is originally located in the
central part of the subclusters moves both in the parallel and perpendicular
directions. Since the equilibrium timescale of the gas along these directions
is relatively short, temperature difference between ions and electrons is
larger in the directions tilted by the angles of with respect to
the collision axis. The electron temperature could be significantly lower that
the plasma mean temperature by at most. The significance of our
results in the interpretation of X-ray observations is briefly discussed.Comment: 20 pages, 11 figures, Accepted for publication in Ap
Recommended from our members
Gastric Extremely Well-Diferentiated Intestinal-Type Adenocarcinoma: A Challenging Lesion to Achieve Complete Endoscopic Resection
Extremely well-differentiated tubular adenocarcinomas (EWDAs) of the stomach are characterized by surface maturation and their mimicking of intestinal metaplasia. Endoscopically, intramucosal EWDAs are frequently ill defined with indistinct borders due to the pallor of the neoplastic mucosa and the lack of contrast against the background atrophic and metaplastic mucosa. We evaluated the effectiveness of endoscopic resection for EWDAs after endoscopic submucosal dissection (ESD).
Among 872 patients with early gastric cancer, 17 EWDAs were identified (1.9 %). Endoscopically, the flat or depressed type was significantly more common among EWDAs (88.2 %) than among early gastric cancers of other histologies (37.8 %; P < 0.01). The discrepancy between endoscopically estimated tumor size and tumor size as confirmed in pathology reports was significantly greater among EWDAs (18.4 ± 22.0 mm) than among others (5.8 ± 7.5 mm). Involvement of the lateral resection margin was more common (29.4 % vs. 2.5 %; P < 0.05), and complete resection was achieved less often in EWDAs (47.1 % vs. 80.4 %; P = 0.01) compared to the others.
EWDAs are associated with higher rates of incomplete resection after ESD, especially along the lateral margins. Pathologists should alert endoscopists when this diagnosis is made, with its associated risks; and endoscopists should pay particular attention to the extent of these tumors during resection
The Origin of the Silicate Emission Features in the Seyfert 2 Galaxy, NGC 2110
The unified model of active galactic nuclei (AGN) predicts silicate emission
features at 10 and 18 microns in type 1 AGN, and such features have now been
observed in objects ranging from distant QSOs to nearby LINERs. More
surprising, however, is the detection of silicate emission in a few type 2 AGN.
By combining Gemini and Spitzer mid-infrared imaging and spectroscopy of NGC
2110, the closest known Seyfert 2 galaxy with silicate emission features, we
can constrain the location of the silicate emitting region to within 32 pc of
the nucleus. This is the strongest constraint yet on the size of the silicate
emitting region in a Seyfert galaxy of any type. While this result is
consistent with a narrow line region origin for the emission, comparison with
clumpy torus models demonstrates that emission from an edge-on torus can also
explain the silicate emission features and 2-20 micron spectral energy
distribution of this object. In many of the best-fitting models the torus has
only a small number of clouds along the line of sight, and does not extend far
above the equatorial plane. Extended silicate-emitting regions may well be
present in AGN, but this work establishes that emission from the torus itself
is also a viable option for the origin of silicate emission features in active
galaxies of both type 1 and type 2.Comment: ApJL, accepte
The Intrinsic Alignment of Dark Halo Substructures
We investigate the intrinsic alignments of dark halo substructures with their
host halo major-axis orientations both analytically and numerically.
Analytically, we derive the probability density distribution of the angles
between the minor axes of the substructures and the major axes of their host
halos from the physical principles, under the assumption that the substructure
alignment on galaxy scale is a consequence of the tidal fields of the host halo
gravitational potential. Numerically, we use a sample of four cluster-scale
halos and their galaxy-scale substructures from recent high-resolution N-body
simulations to measure the probability density distribution. We compare the
numerical distribution with the analytic prediction, and find that the two
results agree with each other very well. We conclude that our analytic model
provides a quantitative physical explanation for the intrinsic alignment of
dark halo substructures. We also discuss the possibility of discriminating our
model from the anisotropic infall scenario by testing it against very large
N-body simulations in the future.Comment: accepted version, ApJL in press, minor revision, 12 pages, 2 figure
The Origin of the Brightest Cluster Galaxies
Most clusters and groups of galaxies contain a giant elliptical galaxy in
their centres which far outshines and outweighs normal ellipticals. The origin
of these brightest cluster galaxies is intimately related to the collapse and
formation of the cluster. Using an N-body simulation of a cluster of galaxies
in a hierarchical cosmological model, we show that galaxy merging naturally
produces a massive, central galaxy with surface brightness and velocity
dispersion profiles similar to observed BCG's. To enhance the resolution of the
simulation, 100 dark halos at are replaced with self-consistent
disk+bulge+halo galaxy models following a Tully-Fisher relation using 100000
particles for the 20 largest galaxies and 10000 particles for the remaining
ones. This technique allows us to analyze the stellar and dark matter
components independently. The central galaxy forms through the merger of
several massive galaxies along a filament early in the cluster's history.
Galactic cannibalism of smaller galaxies through dynamical friction over a
Hubble time only accounts for a small fraction of the accreted mass. The galaxy
is a flattened, triaxial object whose long axis aligns with the primordial
filament and the long axis of the cluster galaxy distribution agreeing with
observed trends for galaxy-cluster alignment.Comment: Revised and accepted in ApJ, 25 pages, 10 figures, online version
available at http://www.cita.utoronto.ca/~dubinski/bcg
Decentralised Learning MACs for Collision-free Access in WLANs
By combining the features of CSMA and TDMA, fully decentralised WLAN MAC
schemes have recently been proposed that converge to collision-free schedules.
In this paper we describe a MAC with optimal long-run throughput that is almost
decentralised. We then design two \changed{schemes} that are practically
realisable, decentralised approximations of this optimal scheme and operate
with different amounts of sensing information. We achieve this by (1)
introducing learning algorithms that can substantially speed up convergence to
collision free operation; (2) developing a decentralised schedule length
adaptation scheme that provides long-run fair (uniform) access to the medium
while maintaining collision-free access for arbitrary numbers of stations
Spatial and kinematic alignments between central and satellite halos
Based on a cosmological N-body simulation we analyze spatial and kinematic
alignments of satellite halos within six times the virial radius of group size
host halos (Rvir). We measure three different types of spatial alignment: halo
alignment between the orientation of the group central substructure (GCS) and
the distribution of its satellites, radial alignment between the orientation of
a satellite and the direction towards its GCS, and direct alignment between the
orientation of the GCS and that of its satellites. In analogy we use the
directions of satellite velocities and probe three further types of alignment:
the radial velocity alignment between the satellite velocity and connecting
line between satellite and GCS, the halo velocity alignment between the
orientation of the GCS and satellite velocities and the auto velocity alignment
between the satellites orientations and their velocities. We find that
satellites are preferentially located along the major axis of the GCS within at
least 6 Rvir (the range probed here). Furthermore, satellites preferentially
point towards the GCS. The most pronounced signal is detected on small scales
but a detectable signal extends out to 6 Rvir. The direct alignment signal is
weaker, however a systematic trend is visible at distances < 2 Rvir. All
velocity alignments are highly significant on small scales. Our results suggest
that the halo alignment reflects the filamentary large scale structure which
extends far beyond the virial radii of the groups. In contrast, the main
contribution to the radial alignment arises from the adjustment of the
satellite orientations in the group tidal field. The projected data reveal good
agreement with recent results derived from large galaxy surveys. (abridged)Comment: accepted for publication in Ap
Viral population estimation using pyrosequencing
The diversity of virus populations within single infected hosts presents a
major difficulty for the natural immune response as well as for vaccine design
and antiviral drug therapy. Recently developed pyrophosphate based sequencing
technologies (pyrosequencing) can be used for quantifying this diversity by
ultra-deep sequencing of virus samples. We present computational methods for
the analysis of such sequence data and apply these techniques to pyrosequencing
data obtained from HIV populations within patients harboring drug resistant
virus strains. Our main result is the estimation of the population structure of
the sample from the pyrosequencing reads. This inference is based on a
statistical approach to error correction, followed by a combinatorial algorithm
for constructing a minimal set of haplotypes that explain the data. Using this
set of explaining haplotypes, we apply a statistical model to infer the
frequencies of the haplotypes in the population via an EM algorithm. We
demonstrate that pyrosequencing reads allow for effective population
reconstruction by extensive simulations and by comparison to 165 sequences
obtained directly from clonal sequencing of four independent, diverse HIV
populations. Thus, pyrosequencing can be used for cost-effective estimation of
the structure of virus populations, promising new insights into viral
evolutionary dynamics and disease control strategies.Comment: 23 pages, 13 figure
- …