832 research outputs found
Coherent Backscattering of light in a magnetic field
This paper describes how coherent backscattering is altered by an external
magnetic field. In the theory presented, magneto-optical effects occur inside
Mie scatterers embedded in a non-magnetic medium. Unlike previous theories
based on point-like scatterers, the decrease of coherent backscattering is
obtained in leading order of the magnetic field using rigorous Mie theory. This
decrease is strongly enhanced in the proximity of resonances, which cause the
path length of the wave inside a scatterer to be increased. Also presented is a
novel analysis of the shape of the backscattering cone in a magnetic field.Comment: 27 pages, 5 figures, Revtex, to appear in Phys. Rev.
Electrostatic and electrokinetic contributions to the elastic moduli of a driven membrane
We discuss the electrostatic contribution to the elastic moduli of a cell or
artificial membrane placed in an electrolyte and driven by a DC electric field.
The field drives ion currents across the membrane, through specific channels,
pumps or natural pores. In steady state, charges accumulate in the Debye layers
close to the membrane, modifying the membrane elastic moduli. We first study a
model of a membrane of zero thickness, later generalizing this treatment to
allow for a finite thickness and finite dielectric constant. Our results
clarify and extend the results presented in [D. Lacoste, M. Cosentino
Lagomarsino, and J. F. Joanny, Europhys. Lett., {\bf 77}, 18006 (2007)], by
providing a physical explanation for a destabilizing term proportional to
\kps^3 in the fluctuation spectrum, which we relate to a nonlinear ()
electro-kinetic effect called induced-charge electro-osmosis (ICEO). Recent
studies of ICEO have focused on electrodes and polarizable particles, where an
applied bulk field is perturbed by capacitive charging of the double layer and
drives flow along the field axis toward surface protrusions; in contrast, we
predict "reverse" ICEO flows around driven membranes, due to curvature-induced
tangential fields within a non-equilibrium double layer, which hydrodynamically
enhance protrusions. We also consider the effect of incorporating the dynamics
of a spatially dependent concentration field for the ion channels.Comment: 22 pages, 10 figures. Under review for EPJ
Detection of curved lines with B-COSFIRE filters: A case study on crack delineation
The detection of curvilinear structures is an important step for various
computer vision applications, ranging from medical image analysis for
segmentation of blood vessels, to remote sensing for the identification of
roads and rivers, and to biometrics and robotics, among others. %The visual
system of the brain has remarkable abilities to detect curvilinear structures
in noisy images. This is a nontrivial task especially for the detection of thin
or incomplete curvilinear structures surrounded with noise. We propose a
general purpose curvilinear structure detector that uses the brain-inspired
trainable B-COSFIRE filters. It consists of four main steps, namely nonlinear
filtering with B-COSFIRE, thinning with non-maximum suppression, hysteresis
thresholding and morphological closing. We demonstrate its effectiveness on a
data set of noisy images with cracked pavements, where we achieve
state-of-the-art results (F-measure=0.865). The proposed method can be employed
in any computer vision methodology that requires the delineation of curvilinear
and elongated structures.Comment: Accepted at Computer Analysis of Images and Patterns (CAIP) 201
Phase transitions in a ferrofluid at magnetic field induced microphase separation
In the presence of a magnetic field applied perpendicular to a thin sample
layer, a suspension of magnetic colloidal particles (ferrofluid) can form
spatially modulated phases with a characteristic length determined by the
competition between dipolar forces and short-range forces opposing density
variations. We introduce models for thin-film ferrofluids in which
magnetization and particle density are viewed as independent variables and in
which the non-magnetic properties of the colloidal particles are described
either by a lattice-gas entropy or by the Carnahan-Starling free energy. Our
description is particularly well suited to the low-particle density regions
studied in many experiments. Within mean-field theory, we find isotropic,
hexagonal and stripe phases, separated in general by first-order phase
boundaries.Comment: 12 pages, RevTex, to appear in PR
- …