101 research outputs found
Mechanisms of exchange interactions in some transition metal carboxylates, sulfates, and chlorides
Experimental data on magnetic properties of dimeric carboxylates, [LM(OOCR)2]2, and polymeric sulfates (N2H5)2M(SO4)2 and chlorides AMCl3, where M is a transition metal, are analyzed using the exchange channel model described elsewhere. The model is shown to readily explain considerable variations of exchange parameters in the carboxylate series (M = Ti(III), V(III), Mn(II), Ni(II), and Cu(II)). Analysis of exchange parameter values reveals that only little exchange occurs across the M-O-S-O-M π-system in metal sulfates. Evidence is presented of direct exchange in the chlorides, AMCl3. © 1977 Springer-Verlag
Design, Commissioning and Performance of the PIBETA Detector at PSI
We describe the design, construction and performance of the PIBETA detector
built for the precise measurement of the branching ratio of pion beta decay,
pi+ -> pi0 e+ nu, at the Paul Scherrer Institute. The central part of the
detector is a 240-module spherical pure CsI calorimeter covering 3*pi sr solid
angle. The calorimeter is supplemented with an active collimator/beam degrader
system, an active segmented plastic target, a pair of low-mass cylindrical wire
chambers and a 20-element cylindrical plastic scintillator hodoscope. The whole
detector system is housed inside a temperature-controlled lead brick enclosure
which in turn is lined with cosmic muon plastic veto counters. Commissioning
and calibration data were taken during two three-month beam periods in
1999/2000 with pi+ stopping rates between 1.3*E3 pi+/s and 1.3*E6 pi+/s. We
examine the timing, energy and angular detector resolution for photons,
positrons and protons in the energy range of 5-150 MeV, as well as the response
of the detector to cosmic muons. We illustrate the detector signatures for the
assorted rare pion and muon decays and their associated backgrounds.Comment: 117 pages, 48 Postscript figures, 5 tables, Elsevier LaTeX, submitted
to Nucl. Instrum. Meth.
Quality assessment of integrated water vapour measurements at the St. Petersburg site, Russia: FTIR vs. MW and GPS techniques
The cross-comparison of different techniques for atmospheric integrated water vapour (IWV) measurements is the essential part of their quality assessment protocol. We inter-compare the synchronised data sets of IWV values measured by the Bruker 125 HR Fourier-transform infrared spectrometer (FTIR), RPG-HATPRO microwave radiometer (MW), and Novatel ProPak-V3 global navigation satellite system receiver (GPS) at the St. Petersburg site between August 2014 and October 2016. As the result of accurate spatial and temporal matching of different IWV measurements, all three techniques agree well with each other except for small IWV values. We show that GPS and MW data quality depends on the atmospheric conditions; in dry atmosphere (IWV smaller than 6mm), these techniques are less reliable at the St. Petersburg site than the FTIR method. We evaluate the upper bound of statistical measurement errors for clear-sky conditions as 0.29±0.02mm (1.6±0.3%), 0.55±0.02mm (4.7±0.4%), and 0.76±0.04mm (6.3±0.8%) for FTIR, GPS, and MW methods, respectively. We propose the use of FTIR as a reference method under clear-sky conditions since it is reliable on all scales of IWV variability
The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter
The Atmospheric Chemistry Suite (ACS) package is an element of the Russian contribution to the ESA-Roscosmos ExoMars 2016 Trace Gas Orbiter (TGO) mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. This ensemble of spectrometers has been designed and developed in response to the Trace Gas Orbiter mission objectives that specifically address the requirement of high sensitivity instruments to enable the unambiguous detection of trace gases of potential geophysical or biological interest. For this reason, ACS embarks a set of instruments achieving simultaneously very high accuracy (ppt level), very high resolving power (>10,000) and large spectral coverage (0.7 to 17 μm—the visible to thermal infrared range). The near-infrared (NIR) channel is a versatile spectrometer covering the 0.7–1.6 μm spectral range with a resolving power of ∼20,000. NIR employs the combination of an echelle grating with an AOTF (Acousto-Optical Tunable Filter) as diffraction order selector. This channel will be mainly operated in solar occultation and nadir, and can also perform limb observations. The scientific goals of NIR are the measurements of water vapor, aerosols, and dayside or night side airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the 2.2–4.4 μm range. MIR achieves a resolving power of >50,000. It has been designed to accomplish the most sensitive measurements ever of the trace gases present in the Martian atmosphere. The thermal-infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer encompassing the spectral range of 1.7–17 μm with apodized resolution varying from 0.2 to 1.3 cm−1. TIRVIM is primarily dedicated to profiling temperature from the surface up to ∼60 km and to monitor aerosol abundance in nadir. TIRVIM also has a limb and solar occultation capability. The technical concept of the instrument, its accommodation on the spacecraft, the optical designs as well as some of the calibrations, and the expected performances for its three channels are described
Gluon polarization in the nucleon from quasi-real photoproduction of high-pT hadron pairs
We present a determination of the gluon polarization Delta G/G in the
nucleon, based on the helicity asymmetry of quasi-real photoproduction events,
Q^2<1(GeV/c)^2, with a pair of large transverse-momentum hadrons in the final
state. The data were obtained by the COMPASS experiment at CERN using a 160 GeV
polarized muon beam scattered on a polarized 6-LiD target. The helicity
asymmetry for the selected events is = 0.002 +- 0.019(stat.) +-
0.003(syst.). From this value, we obtain in a leading-order QCD analysis Delta
G/G=0.024 +- 0.089(stat.) +- 0.057(syst.) at x_g = 0.095 and mu^2 =~ 3
(GeV}/c)^2.Comment: 10 pages, 3 figure
First Measurement of the Transverse Spin Asymmetries of the Deuteron in Semi-Inclusive Deep Inelastic Scattering
First measurements of the Collins and Sivers asymmetries of charged hadrons
produced in deep-inelastic scattering of muons on a transversely polarized
6-LiD target are presented. The data were taken in 2002 with the COMPASS
spectrometer using the muon beam of the CERN SPS at 160 GeV/c. The Collins
asymmetry turns out to be compatible with zero, as does the measured Sivers
asymmetry within the present statistical errors.Comment: 6 pages, 2 figure
A new measurement of the Collins and Sivers asymmetries on a transversely polarised deuteron target
New high precision measurements of the Collins and Sivers asymmetries of
charged hadrons produced in deep-inelastic scattering of muons on a
transversely polarised 6LiD target are presented. The data were taken in 2003
and 2004 with the COMPASS spectrometer using the muon beam of the CERN SPS at
160 GeV/c. Both the Collins and Sivers asymmetries turn out to be compatible
with zero, within the present statistical errors, which are more than a factor
of 2 smaller than those of the published COMPASS results from the 2002 data.
The final results from the 2002, 2003 and 2004 runs are compared with naive
expectations and with existing model calculations.Comment: 40 pages, 28 figure
Measurement of the Spin Structure of the Deuteron in the DIS Region
We present a new measurement of the longitudinal spin asymmetry A_1^d and the
spin-dependent structure function g_1^d of the deuteron in the range 1 GeV^2 <
Q^2 < 100 GeV^2 and 0.004< x <0.7. The data were obtained by the COMPASS
experiment at CERN using a 160 GeV polarised muon beam and a large polarised
6-LiD target. The results are in agreement with those from previous experiments
and improve considerably the statistical accuracy in the region 0.004 < x <
0.03.Comment: 10 pages, 6 figures, subm. to PLB, revised: author list, Fig. 4,
details adde
The COMPASS Experiment at CERN
The COMPASS experiment makes use of the CERN SPS high-intensitymuon and
hadron beams for the investigation of the nucleon spin structure and the
spectroscopy of hadrons. One or more outgoing particles are detected in
coincidence with the incoming muon or hadron. A large polarized target inside a
superconducting solenoid is used for the measurements with the muon beam.
Outgoing particles are detected by a two-stage, large angle and large momentum
range spectrometer. The setup is built using several types of tracking
detectors, according to the expected incident rate, required space resolution
and the solid angle to be covered. Particle identification is achieved using a
RICH counter and both hadron and electromagnetic calorimeters. The setup has
been successfully operated from 2002 onwards using a muon beam. Data with a
hadron beam were also collected in 2004. This article describes the main
features and performances of the spectrometer in 2004; a short summary of the
2006 upgrade is also given.Comment: 84 papes, 74 figure
- …