40 research outputs found
The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter
The Atmospheric Chemistry Suite (ACS) package is an element of the Russian contribution to the ESA-Roscosmos ExoMars 2016 Trace Gas Orbiter (TGO) mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. This ensemble of spectrometers has been designed and developed in response to the Trace Gas Orbiter mission objectives that specifically address the requirement of high sensitivity instruments to enable the unambiguous detection of trace gases of potential geophysical or biological interest. For this reason, ACS embarks a set of instruments achieving simultaneously very high accuracy (ppt level), very high resolving power (>10,000) and large spectral coverage (0.7 to 17 μm—the visible to thermal infrared range). The near-infrared (NIR) channel is a versatile spectrometer covering the 0.7–1.6 μm spectral range with a resolving power of ∼20,000. NIR employs the combination of an echelle grating with an AOTF (Acousto-Optical Tunable Filter) as diffraction order selector. This channel will be mainly operated in solar occultation and nadir, and can also perform limb observations. The scientific goals of NIR are the measurements of water vapor, aerosols, and dayside or night side airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the 2.2–4.4 μm range. MIR achieves a resolving power of >50,000. It has been designed to accomplish the most sensitive measurements ever of the trace gases present in the Martian atmosphere. The thermal-infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer encompassing the spectral range of 1.7–17 μm with apodized resolution varying from 0.2 to 1.3 cm−1. TIRVIM is primarily dedicated to profiling temperature from the surface up to ∼60 km and to monitor aerosol abundance in nadir. TIRVIM also has a limb and solar occultation capability. The technical concept of the instrument, its accommodation on the spacecraft, the optical designs as well as some of the calibrations, and the expected performances for its three channels are described
First Measurement of the Transverse Spin Asymmetries of the Deuteron in Semi-Inclusive Deep Inelastic Scattering
First measurements of the Collins and Sivers asymmetries of charged hadrons
produced in deep-inelastic scattering of muons on a transversely polarized
6-LiD target are presented. The data were taken in 2002 with the COMPASS
spectrometer using the muon beam of the CERN SPS at 160 GeV/c. The Collins
asymmetry turns out to be compatible with zero, as does the measured Sivers
asymmetry within the present statistical errors.Comment: 6 pages, 2 figure
Gluon polarization in the nucleon from quasi-real photoproduction of high-pT hadron pairs
We present a determination of the gluon polarization Delta G/G in the
nucleon, based on the helicity asymmetry of quasi-real photoproduction events,
Q^2<1(GeV/c)^2, with a pair of large transverse-momentum hadrons in the final
state. The data were obtained by the COMPASS experiment at CERN using a 160 GeV
polarized muon beam scattered on a polarized 6-LiD target. The helicity
asymmetry for the selected events is = 0.002 +- 0.019(stat.) +-
0.003(syst.). From this value, we obtain in a leading-order QCD analysis Delta
G/G=0.024 +- 0.089(stat.) +- 0.057(syst.) at x_g = 0.095 and mu^2 =~ 3
(GeV}/c)^2.Comment: 10 pages, 3 figure
A new measurement of the Collins and Sivers asymmetries on a transversely polarised deuteron target
New high precision measurements of the Collins and Sivers asymmetries of
charged hadrons produced in deep-inelastic scattering of muons on a
transversely polarised 6LiD target are presented. The data were taken in 2003
and 2004 with the COMPASS spectrometer using the muon beam of the CERN SPS at
160 GeV/c. Both the Collins and Sivers asymmetries turn out to be compatible
with zero, within the present statistical errors, which are more than a factor
of 2 smaller than those of the published COMPASS results from the 2002 data.
The final results from the 2002, 2003 and 2004 runs are compared with naive
expectations and with existing model calculations.Comment: 40 pages, 28 figure
Measurement of the Spin Structure of the Deuteron in the DIS Region
We present a new measurement of the longitudinal spin asymmetry A_1^d and the
spin-dependent structure function g_1^d of the deuteron in the range 1 GeV^2 <
Q^2 < 100 GeV^2 and 0.004< x <0.7. The data were obtained by the COMPASS
experiment at CERN using a 160 GeV polarised muon beam and a large polarised
6-LiD target. The results are in agreement with those from previous experiments
and improve considerably the statistical accuracy in the region 0.004 < x <
0.03.Comment: 10 pages, 6 figures, subm. to PLB, revised: author list, Fig. 4,
details adde
The COMPASS Experiment at CERN
The COMPASS experiment makes use of the CERN SPS high-intensitymuon and
hadron beams for the investigation of the nucleon spin structure and the
spectroscopy of hadrons. One or more outgoing particles are detected in
coincidence with the incoming muon or hadron. A large polarized target inside a
superconducting solenoid is used for the measurements with the muon beam.
Outgoing particles are detected by a two-stage, large angle and large momentum
range spectrometer. The setup is built using several types of tracking
detectors, according to the expected incident rate, required space resolution
and the solid angle to be covered. Particle identification is achieved using a
RICH counter and both hadron and electromagnetic calorimeters. The setup has
been successfully operated from 2002 onwards using a muon beam. Data with a
hadron beam were also collected in 2004. This article describes the main
features and performances of the spectrometer in 2004; a short summary of the
2006 upgrade is also given.Comment: 84 papes, 74 figure
Search for the Phi(1860) Pentaquark at COMPASS
Narrow Xi-pi+- and Xi-bar+pi+- resonances produced by quasi-real photons have
been searched for by the COMPASS experiment at CERN. The study was stimulated
by the recent observation of an exotic baryonic state decaying into Xi-pi-, at
a mass of 1862 MeV, interpreted as a pentaquark. While the ordinary hyperon
states Xi(1530)^0 and Xi-bar(1530)^0 are clearly seen, no exotic baryon is
observed in the data taken in 2002 and 2003.Comment: 10 pages, 5 figure
Efficiency calibration of a mini-orange type beta-spectrometer by the beta sup - -spectrum of sup 9 sup 0 Sr
A specific method for efficiency calibration of a mini-orange type beta-spectrometer by means of the continuous beta sup - -spectrum of sup 9 sup 0 Sr and the conversion electron spectrum of sup 2 sup 0 sup 7 Bi in the energy range from 500 to 2200 keV has been elaborated. In the experiment typical SmCo sub 5 magnets (6A and 8A) were used. An accuracy of efficiency determination was 5-10 %