19,765 research outputs found
Recommended from our members
Processing and Microstructure of WC-CO Cermets by Laser Engineering Net Shaping
Submicron-sized tungsten carbide-cobalt (WC-Co) powder and nanostructured WC-Co
powder were applied to make thick wall samples by the Laser Engineered Net Shaping (LENSÂź)
process. It was found that decomposition and decarburization of WC was limited during laser
deposition because of the features of the LENSÂź process: high cooling rate, short heating time,
and low oxygen concentration. The effects of working distance, as well as laser power, powder
feed rate, and traverse speed on microstructure were studied in this paper. Thermal behavior
leading to the observed microstructures that result from the variations in the processing
parameters was investigated in detailMechanical Engineerin
Single-input and single-output (SISO) controller reduction based on the -norm
This paper proposes a new method to solve the controller-reduction problem based on the -norm. This method uses a reduced-order closed-loop system to deduce reduced-order controllers. The problem of obtaining the required lower-order closed-loop system was formulated as an -norm optimization, and the conditions were provided for guaranteeing the internal stability and the existence of lower-order controllers from the obtained reduced-order closed-loop system. In addition, the particle swarm optimization and sequence linear programming were adopted to solve the resultant -norm optimization. Two numerical examples demonstrated the effectiveness of the proposed method
Exchange Field-Mediated Magnetoresistance in the Correlated Insulator Phase of Be Films
We present a study of the proximity effect between a ferromagnet and a
paramagnetic metal of varying disorder. Thin beryllium films are deposited onto
a 5 nm-thick layer of the ferromagnetic insulator EuS. This bilayer arrangement
induces an exchange field, , of a few tesla in low resistance Be films
with sheet resistance , where is the quantum resistance.
We show that survives in very high resistance films and, in fact,
appears to be relatively insensitive to the Be disorder. We exploit this fact
to produce a giant low-field magnetoresistance in the correlated insulator
phase of Be films with .Comment: To be published in Physical Review Letter
Recommended from our members
Modeling singular mineralization processes due to fluid pressure fluctuations
Mineralization in the Earth's crust can be regarded as a singular process resulting in large amounts of mass accumulation and element enrichment over short time or space scales. The elemental concentrations modeled by fractals and multifractals show self-similarity and scale-invariant properties. We take the view that fluid-pressure variations in response to earthquakes or fault rupture are primarily responsible for changes in solubility and trigger transient physical and chemical variations in ore-forming fluids that enhance the mineralization process. Based on this general concept, we investigated mineral precipitation processes driven by rapid fluid pressure reductions by coupling mineralization to a cellular automaton model to reveal the nonlinear mechanism of the orogenic gold mineralization process using simulation. In the model, fluid pressure can increase to the rock failure condition, which was set as lithostatic pressure at a depth of 10 km (270 MPa), due to either porosity reduction or dehydration reactions. Rapid drops in pressure resulting from fault rupture or local hydrofracture may induce repeated gold precipitation. The geochemical patterns generated by the model evolve from depletion to enrichment patterns, and from spatially random to spatially clustered structures quantified by multifractal models and geostatistics. Results show how metal elements self-organize to form high metal concentration patterns displaying self-similarity and scale-invariance. These transitions are attributed to the growth and coalescence of sub-networks with different fluid pressures up to the percolation threshold, resulting in a wide range of fluid pressure reductions and gold precipitation in the form of clusters. The results suggest that cyclic evolution of fluid pressure and its effects on gold precipitation systems can effectively mimic the repeated mineralization superposition process, and generate complex geochemical patterns characterized by a multifractal model. The nonlinear behavior exhibits scale-invariance and self-organized critical threshold, where mineral phase separations result from fluid pressure reductions associated with fault failure
QCD corrections to polarization of J/\psi and \Upsilon at Fermilab Tevatron and CERN LHC
In this work, we present more detail of the calculation on the NLO QCD
corrections to polarization of direct J/psi production via color singlet at
Tevatron and LHC, as well as the results for Upsilon for the first time. Our
results show that the J/psi polarization status drastically changes from
transverse polarization dominant at LO into longitudinal polarization dominant
in the whole range of the transverse momentum of J/psi when the NLO
corrections are counted. For Upsilon production, the p_t distribution of the
polarization status behaves almost the same as that for J/psi except that the
NLO result is transverse polarization at small p_t range. Although the
theoretical evaluation predicts a larger longitudinal polarization than the
measured value at Tevatron, it may provide a solution towards the previous
large discrepancy for J/psi and Upsilon polarization between theoretical
predication and experimental measurement, and suggests that the next important
step is to calculate the NLO corrections to hadronproduction of color octet
state J/psi^(8) and Upsilon^(8). Our calculations are performed in two ways,
namely we do and do not analytically sum over the polarizations, and then check
them with each other.Comment: 12 pages, 12 figures, two columns, use revtex4; to appear in PR
The effect of discrete breathers on heat conduction in nonlinear chains
Intensive studies in the past decades have suggested that the heat
conductivity diverges with the system size as in one dimensional momentum conserving nonlinear lattices and the
value of is universal. But in the Fermi-Pasta-Ulam- lattices
with next-nearest-neighbor interactions we find that strongly depends
on , the ratio of the next-nearest-neighbor coupling to the
nearest-neighbor coupling. We relate the -dependent heat conduction to
the interactions between the long-wavelength phonons and the randomly
distributed discrete breathers. Our results provide an evidence to show that
the nonlinear excitations affect the heat transport.Comment: 4 pages, 5 figure
Statistical Properties of Interacting Bose Gases in Quasi-2D Harmonic Traps
The analytical probability distribution of the quasi-2D (and purely 2D) ideal
and interacting Bose gas are investigated by using a canonical ensemble
approach. Using the analytical probability distribution of the condensate, the
statistical properties such as the mean occupation number and particle number
fluctuations of the condensate are calculated. Researches show that there is a
continuous crossover of the statistical properties from a quasi-2D to a purely
2D ideal or interacting gases. Different from the case of a 3D Bose gas, the
interaction between atoms changes in a deep way the nature of the particle
number fluctuations.Comment: RevTex, 10pages, 4 figures, E-mail: [email protected]
Internal Josephson-Like Tunneling in Two-Component Bose-Einstein Condensates Affected by Sign of the Atomic Interaction and External Trapping Potential
We study the Josephson-like tunneling in two-component Bose-Einstein
condensates coupled with microwave field in respond to various attractive and
repulsive atomic interaction under the various aspect ratio of trapping
potential and the gravitational field. It is very interesting to find that the
dynamic of Josephson-like tunneling can be controlled from fast damped
oscillations and asymmetric occupation to nondamped oscillation and symmetric
occupation.Comment: 4 pages, 5 figure
- âŠ