81 research outputs found

    Characterization and modeling of precipitation kinetics in an Al-Zn-Mg alloy

    Get PDF
    Abstract The precipitation kinetics in AA7108.70 Al-Zn -Mg alloy have been investigated by small angle X-ray scattering and transmission electron microscopy, and computer modeled by use of an internal state variable model concerning two regimes, (i) precipitation and growth and (ii) growth and coarsening. The modeling and experiments were done for isothermal heat treatment at 120, 140, 150, 160 and 170°C. These treatments were also compared with the industrial two step T6 treatment

    Pattern formation and selection in quasi-static fracture

    Full text link
    Fracture in quasi-statically driven systems is studied by means of a discrete spring-block model. Developed from close comparison with desiccation experiments, it describes crack formation induced by friction on a substrate. The model produces cellular, hierarchical patterns of cracks, characterized by a mean fragment size linear in the layer thickness, in agreement with experiments. The selection of a stationary fragment size is explained by exploiting the correlations prior to cracking. A scaling behavior associated with the thickness and substrate coupling, derived and confirmed by simulations, suggests why patterns have similar morphology despite their disparity in scales.Comment: 4 pages, RevTeX, two-column, 5 PS figures include

    Pinning of a solid--liquid--vapour interface by stripes of obstacles

    Full text link
    We use a macroscopic Hamiltonian approach to study the pinning of a solid--liquid--vapour contact line on an array of equidistant stripes of obstacles perpendicular to the liquid. We propose an estimate of the density of pinning stripes for which collective pinning of the contact line happens. This estimate is shown to be in good agreement with Langevin equation simulation of the macroscopic Hamiltonian. Finally we introduce a 2--dimensional mean field theory which for small strength of the pinning stripes and for small capillary length gives an excellent description of the averaged height of the contact line.Comment: Plain tex, 12 pages, 3 figures available upon reques

    Impacts of changed litter inputs on soil CO2 efflux in three forest types in central south China

    Get PDF
    We have defined Neutrosophic Over-/Under-/Off-Set and Logic for the first time in 1995 and published in 2007. During 1995-2016 we presented them to various national and international conferences and seminars. These new notions are totally different from other sets/logics/probabilities. We extended the neutrosophic set respectively to Neutrosophic Overset {when some neutrosophic component is > 1}, to Neutrosophic Underset {when some neutrosophic component is < 0}, and to Neutrosophic Offset {when some neutrosophic components are off the interval [0, 1], i.e. some neutrosophic component > 1 and other neutrosophic component < 0}. This is no surprise since our real-world has numerous examples and applications of over-/under-/off-neutrosophic components

    Adoption incentives and environmental policy timing under asymmetric information and strategic firm behaviour

    Get PDF
    We consider the incentives of a single firm to invest in a cleaner technology under emission quotas and emission taxation. We assume asymmetric information about the firm's cost of employing the new technology. Policy is set either before the firm invests (commitment) or after (time consistency). Contrary to conventional wisdom, we find that with commitment (time consistency), quotas give higher (lower) investment incentives than taxes. With quotas (taxes), commitment generally leads to higher (lower) welfare than time consistency. Under commitment with quadratic abatement costs and environmental damages, a modified Weitzman rule applies and quotas usually lead to higher welfare than taxes

    AprĂšs une dĂ©cennie de « buzz » : quelle pertinence pour le concept de modĂšle d’affaires en stratĂ©gie?

    Get PDF
    Une dizaine d’annĂ©es aprĂšs la renaissance manifeste de l’intĂ©rĂȘt des praticiens, puis des chercheurs, pour le concept de modĂšle d’affaires (business model), la question de sa pertinence au regard des concepts et des outils existants en stratĂ©gie persiste. Concept polysĂ©mique? Concept « valise »? Concept utile? Concept durable? Autant de questions qui, au-delĂ  de la popularitĂ© du concept, nous invitent Ă  porter un regard Ă  la fois critique et constructif sur le modĂšle d’affaires dans le champ du management stratĂ©gique.Alors que notre pratique d’enseignement de la stratĂ©gie et d’accompagnement de projets d’innovation nous amenait Ă  questionner la pertinence du concept/outil du modĂšle d’affaires, il nous sembla qu’un tour de table s’imposait pour tenter de rĂ©pondre aux questions soulevĂ©es. Ce tour de table s’est tenu le 8 juin 2011 lors de la XXe confĂ©rence de l’Association Internationale de Management StratĂ©gique (AIMS) Ă  Nantes. Ce petit ouvrage a pour but de faire partager au lecteur l’intĂ©gralitĂ© des propos Ă©changĂ©s ce jour-lĂ 

    New Suggestions for the Mechanical Control of Bone Remodeling

    Get PDF
    Bone is constantly renewed over our lifetime through the process of bone (re)modeling. This process is important for bone to allow it to adapt to its mechanical environment and to repair damage from everyday life. Adaptation is thought to occur through the mechanosensitive response controlling the bone-forming and -resorbing cells. This report shows a way to extract quantitative information about the way remodeling is controlled using computer simulations. Bone resorption and deposition are described as two separate stochastic processes, during which a discrete bone packet is removed or deposited from the bone surface. The responses of the bone-forming and -resorbing cells to local mechanical stimuli are described by phenomenological remodeling rules. Our strategy was to test different remodeling rules and to evaluate the time evolution of the trabecular architecture in comparison to what is known from Ό-CT measurements of real bone. In particular, we tested the reaction of virtual bone to standard therapeutic strategies for the prevention of bone deterioration, i.e., physical activity and medications to reduce bone resorption. Insensitivity of the bone volume fraction to reductions in bone resorption was observed in the simulations only for a remodeling rule including an activation barrier for the mechanical stimulus above which bone deposition is switched on. This is in disagreement with the commonly used rules having a so-called lazy zone

    On Environmental Regulation of Oligopolies: Emission versus Performance Standards

    Get PDF
    By specializing Montero’s (J Environ Econ Manag 44:23–44, 2002) model of environmental regulation under Cournot competition to an oligopoly with linear demand and quadratic abatement costs, we extend his comparison of firms incentives to invest in R&D under emission and performance standards by solving for a closed form solution of the underlying two-stage game. This allows for a full comparison of the two instruments in terms of their resulting propensity for R&D and equilibrium industry output. In addition, we incorporate an equilibrium welfare analysis. Finally, we investigate a three-stage game wherein a welfare-maximizing regulator sets a socially optimal emission cap under each policy instrument. For the latter game, while closed-form solutions for the subgame-perfect equilibrium are not possible, we establish numerically that the resulting welfare is always larger under a performance standard

    From Architectured Materials to Large-Scale Additive Manufacturing

    Get PDF
    The classical material-by-design approach has been extensively perfected by materials scientists, while engineers have been optimising structures geometrically for centuries. The purpose of architectured materials is to build bridges across themicroscale ofmaterials and themacroscale of engineering structures, to put some geometry in the microstructure. This is a paradigm shift. Materials cannot be considered monolithic anymore. Any set of materials functions, even antagonistic ones, can be envisaged in the future. In this paper, we intend to demonstrate the pertinence of computation for developing architectured materials, and the not-so-incidental outcome which led us to developing large-scale additive manufacturing for architectural applications

    Computational Homogenization of Architectured Materials

    Get PDF
    Architectured materials involve geometrically engineered distributions of microstructural phases at a scale comparable to the scale of the component, thus calling for new models in order to determine the effective properties of materials. The present chapter aims at providing such models, in the case of mechanical properties. As a matter of fact, one engineering challenge is to predict the effective properties of such materials; computational homogenization using finite element analysis is a powerful tool to do so. Homogenized behavior of architectured materials can thus be used in large structural computations, hence enabling the dissemination of architectured materials in the industry. Furthermore, computational homogenization is the basis for computational topology optimization which will give rise to the next generation of architectured materials. This chapter covers the computational homogenization of periodic architectured materials in elasticity and plasticity, as well as the homogenization and representativity of random architectured materials
    • 

    corecore