40 research outputs found

    MYCN gene amplification is a powerful prognostic factor even in infantile neuroblastoma detected by mass screening

    Get PDF
    MYCN is the most powerful prognostic factor in cases of older children. However, how MYCN is related to the prognosis of infantile cases is not clear. A mass screening program was carried out by measuring urinary catecholamine metabolites (VMA and HVA) from 6-month-old infants. Of 2084 cases detected by the screening program, MYCN amplification (MNA) was examined by Southern blot analyses in 1533 cases from 1987 to 2000. Of the 1533 cases examined, 1500 (97.8%) showed no MNA, 20 cases (1.3%) showed MNA from three to nine copies, and 13 (0.8%) cases showed more than 10 copies. The 4-year overall survival rates of these three groups (99, 89 and 53%, respectively) were significantly different (P<0.001), indicating that MYCN copy number correlates with the prognosis. Cases with MNA more than 10 copies were more advanced than those without amplification (stage III, IV vs I, II, IVs; P<0.001). Patients with MNA more than 10 copies had significantly higher serum levels of neuron-specific-enolase (NSE) and ferritin than non-amplified patients (P=0.049, P=0.025, respectively). MYCN amplification was strongly correlated with a poor prognosis in infantile neuroblastoma cases. Therefore, for the selection of appropriate treatment, an accurate determination of MNA is indispensable

    NR4A3 rearrangement reliably distinguishes between the clinicopathologically overlapping entities myoepithelial carcinoma of soft tissue and cellular extraskeletal myxoid chondrosarcoma

    Get PDF
    Myoepithelial carcinoma of soft tissue (MEC) and cellular extraskeletal myxoid chondrosarcoma (cEMC) share striking similarities. In this paper, we compare ten MECs with five cEMCs. MEC patients had an equal gender distribution. The age range was 15–76 years (mean, 42 years). Tumours were located on extremities, pelvic girdle, vulva and neck. Follow-up, available for nine patients, ranged from 4 to 85 months (mean, 35 months). Five patients were alive without evidence of disease, two were alive with disease and two died 8 months after the initial diagnosis. cEMCs were from three males and two females with an age range of 37–82 years (mean, 57 years); they presented in extremities, shoulder and paravertebral/cervical. Follow-up, available for four patients, ranged from 6 to 220 months (mean, 61 months). All patients were alive, two with recurrences and/or metastases and two without evidence of disease. Morphologically, the distinction between these two entities was difficult since all cases exhibited features typically seen in myoepithelial tumours. Immunohistochemically, MECs expressed pan-keratin (80 %), epithelial membrane antigen (EMA; 57 %), S100 (50 %), alpha-smooth muscle actin (ASMA; 75 %), calponin (67 %) and p63 (25 %). S100 and EMA were expressed in 40 % of cEMC cases respectively with additional immunoreactivity for p63, ASMA and glial fibrillary acidic protein in one case. Pan-keratin was negative in all neoplasms. NR4A3 rearrangement was present in four of four cEMCs and in none of the MECs. In contrast, three of nine (33 %) MECs and four of five (80 %) cEMCs showed an EWSR1 rearrangement. In summary, MECs and cEMCs share clinical, morphological, immunohistochemical and genetic characteristics. The pathognomic rearrangement of NR4A3 is a useful diagnostic feature in identifying cEMCs
    corecore