12,115 research outputs found

    Calculation of composition distribution of ultrafine ion-H2O-H2SO4 clusters using a modified binary ion nucleation theory

    Get PDF
    Thomson's ion nucleation theory was modified to include the effects of curvature dependence of the microscopic surface tension of field dependent, nonlinear, dielectric properties of the liquid; and of sulfuric acid hydrate formation in binary mixtures of water and sulfuric acid vapors. The modified theory leads to a broadening of the ion cluster spectrum, and shifts it towards larger numbers of H2O and H2SO4 molecules. Whether there is more shifting towards larger numbers of H2O or H2SO4 molecules depends on the relative humidity and relative acidity of the mixture. Usually, a broadening of the spectrum is accompanied by a lowering of the mean cluster intensity. For fixed values of relative humidity and relative acidity, a similar broadening pattern is observed when the temperature is lowered. These features of the modified theory illustrate that a trace of sulfuric acid can facilitate the formation of ultrafine, stable, prenucleation ion clusters as well as the growth of the prenucleation ion clusters towards the critical saddle point conditions, even with low values of relative humidity and relative acidity

    Large Component QCD and Theoretical Framework of Heavy Quark Effective Field Theory

    Full text link
    Based on a large component QCD derived directly from full QCD by integrating over the small components of quark fields with p<E+mQ|{\bf p}| < E + m_Q, an alternative quantization procedure is adopted to establish a basic theoretical framework of heavy quark effective field theory (HQEFT) in the sense of effective quantum field theory. The procedure concerns quantum generators of Poincare group, Hilbert and Fock space, anticommutations and velocity super-selection rule, propagator and Feynman rules, finite mass corrections, trivialization of gluon couplings and renormalization of Wilson loop. The Lorentz invariance and discrete symmetries in HQEFT are explicitly illustrated. Some new symmetries in the infinite mass limit are discussed. Weak transition matrix elements and masses of hadrons in HQEFT are well defined to display a manifest spin-flavor symmetry and 1/mQ1/m_Q corrections. A simple trace formulation approach is explicitly demonstrated by using LSZ reduction formula in HQEFT, and shown to be very useful for parameterizing the transition form factors via 1/mQ1/m_Q expansion. As the heavy quark and antiquark fields in HQEFT are treated on the same footing in a fully symmetric way, the quark-antiquark coupling terms naturally appear and play important roles for simplifying the structure of transition matrix elements, and for understanding the concept of `dressed heavy quark' - hadron duality. In the case that the `longitudinal' and `transverse' residual momenta of heavy quark are at the same order of power counting, HQEFT provides a consistent approach for systematically analyzing heavy quark expansion in terms of 1/mQ1/m_Q. Some interesting features in applications of HQEFT to heavy hadron systems are briefly outlined.Comment: 59 pages, RevTex, no figures, published versio

    Single top or bottom production associated with a scalar in \gamma p collision as a probe of topcolor-assisted technicolor

    Full text link
    In the framework of the topcolor-assisted technicolor (TC2) models, we study the productions of a single top or bottom quark associated with a scalar in \gamma-p collision, which proceed via the subprocesses c\gamma -> t\pi_t^0, c\gamma -> t h_t^0 and c\gamma -> b\pi^+_t mediated by the anomalous top or bottom coupling tc\pi_t^0, tch_t^0 and bc\pi_t^+. These productions, while extremely suppressed in the Standard Model, are found to be significantly enhanced in the large part of the TC2 parameter space, especially the production via c\gamma -> b\pi^+ can have a cross section of 100 fb, which may be accessible and allow for a test of the TC2 models.Comment: 13 pages, 4 figures, comments and references adde

    Band‐by‐Band Contributions to the Longwave Cloud Radiative Feedbacks

    Full text link
    Cloud radiative feedback is central to our projection of future climate change. It can be estimated using the cloud radiative kernel (CRK) method or adjustment method. This study, for the first time, examines the contributions of each spectral band to the longwave (LW) cloud radiative feedbacks (CRFs). Simulations of three warming scenarios are analyzed, including +2 K sea surface temperature, 2 × CO2, and 4 × CO2 experiments. While the LW broadband CRFs derived from the CRK and adjustment methods agree with each other, they disagree on the relative contributions from the far‐infrared and window bands. The CRK method provides a consistent band‐by‐band decomposition of LW CRF for different warming scenarios. The simulated and observed short‐term broadband CRFs for the 2003–2013 period are similar to the long‐term counterparts, but their band‐by‐band decompositions are different, which can be further related to the cloud fraction changes in respective simulations and observation.Plain Language SummaryWe studied how the cloud change in response to surface temperature change leads to the changes of radiation at the top of the atmosphere (referred to as cloud radiative feedback) over different frequency ranges in the longwave (referred to as spectral bands). While different methods can provide a similar estimate of broadband cloud radiative feedbacks, the decomposition to different longwave spectral bands can be different from one method to another. The cloud radiative kernel method can provide a more consistent band‐by‐band decomposition of the longwave cloud radiative feedback for different warming scenarios. The decomposition for cloud radiative feedback derived from the warming experiments is considerably different from that derived from decadal‐scale observations and simulations. Such differences in spectral band decomposition can be related to the specific cloud fraction changes for different types of clouds defined with respect to cloud top pressure and cloud opacity.Key PointsThe band‐by‐band decomposition of cloud radiative feedback is studied for the first timeTwo different methods can give similar longwave broadband radiative feedbacks, but their band‐by‐band decompositions are differentSeemingly agreeable broadband cloud radiative feedbacks can have different spectral decompositions, which can be related to cloud changesPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/150592/1/grl59162_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150592/2/grl59162.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150592/3/grl59162-sup-0001-2019GL083466-SI.pd

    q-Deformation of W(2,2) Lie algebra associated with quantum groups

    Full text link
    An explicit realization of the W(2,2) Lie algebra is presented using the famous bosonic and fermionic oscillators in physics, which is then used to construct the q-deformation of this Lie algebra. Furthermore, the quantum group structures on the q-deformation of this Lie algebra are completely determined.Comment: 12 page

    Nanometric holograms based on a topological insulator material

    Get PDF
    Holography has extremely extensive applications in conventional optical instruments spanning optical microscopy and imaging, three-dimensional displays and metrology. To integrate holography with modern low-dimensional electronic devices, holograms need to be thinned to a nanometric scale. However, to keep a pronounced phase shift modulation, the thickness of holograms has been generally limited to the optical wavelength scale, which hinders their integration with ultrathin electronic devices. Here, we break this limit and achieve 60 nm holograms using a topological insulator material. We discover that nanometric topological insulator thin films act as an intrinsic optical resonant cavity due to the unequal refractive indices in their metallic surfaces and bulk. The resonant cavity leads to enhancement of phase shifts and thus the holographic imaging. Our work paves a way towards integrating holography with flat electronic devices for optical imaging, data storage and information security

    Global axisymmetric stability analysis for a composite system of two gravitationally coupled scale-free discs

    Full text link
    In a composite system of gravitationally coupled stellar and gaseous discs, we perform linear stability analysis for axisymmetric coplanar perturbations using the two-fluid formalism. The background stellar and gaseous discs are taken to be scale-free with all physical variables varying as powers of cylindrical radius rr with compatible exponents. The unstable modes set in as neutral modes or stationary perturbation configurations with angular frequency ω=0\omega=0.Comment: 7 pages using AAS styl
    corecore