1,192 research outputs found
WIMP Annihilation and Cooling of Neutron Stars
We study the effect of WIMP annihilation on the temperature of a neutron
star. We shall argue that the released energy due to WIMP annihilation inside
the neutron stars, might affect the temperature of stars older than 10 million
years, flattening out the temperature at K for a typical neutron
star.Comment: 20 pages, 2 figure
Spontaneous CP Symmetry Breaking at the Electroweak Scale
We present a top-condensation model in which the CP symmetry is spontaneously
broken at the electroweak scale due to the condensation of two composite Higgs
doublets. In particular the CP-violating phase of the CKM matrix is generated.
A simpler model where only one quark family is included is also discussed. In
this case, for a general four-fermion interaction (), the
particle spectrum is the one of the one Higgs doublet model.Comment: 25 pages, LaTeX. References and comment adde
Neutrinos in IceCube/KM3NeT as probes of Dark Matter Substructures in Galaxy Clusters
Galaxy clusters are one of the most promising candidate sites for dark matter
annihilation. We focus on dark matter with mass in the range 10 GeV - 100 TeV
annihilating to muon pairs, neutrino pairs, top pairs, or two neutrino pairs,
and forecast the expected sensitivity to the annihilation cross section into
these channels by observing galaxy clusters at IceCube/KM3NeT. Optimistically,
the presence of dark matter substructures in galaxy clusters is predicted to
enhance the signal by 2-3 orders of magnitude over the contribution from the
smooth component of the dark matter distribution. Optimizing for the angular
size of the region of interest for galaxy clusters, the sensitivity to the
annihilation cross section of heavy DM with mass in the range 300 GeV - 100 TeV
will be of the order of 10^{-24} cm^3 s^{-1}, for full IceCube/KM3NeT live time
of 10 years, which is about one order of magnitude better than the best limit
that can be obtained by observing the Milky Way halo. We find that neutrinos
from cosmic ray interactions in the galaxy cluster, in addition to the
atmospheric neutrinos, are a source of background. We show that significant
improvement in the experimental sensitivity can be achieved for lower DM masses
in the range 10 GeV - 300 GeV if neutrino-induced cascades can be reconstructed
to approximately 5 degrees accuracy, as may be possible in KM3NeT. We therefore
propose that a low-energy extension "KM3NeT-Core", similar to DeepCore in
IceCube, be considered for an extended reach at low DM masses.Comment: v2: 17 pages, 5 figures. Neutrino spectra corrected, dependence on
dark matter substructure model included, references added. Results unchanged.
Accepted in PR
Cosmic superstring trajectories in warped compactifications
We explore the generic motion of cosmic (super)strings when the internal
compact dimensions are warped, using the Klebanov-Strassler solution as a
prototypical throat geometry. We find that there is no dynamical mechanism
which localises the string at the tip of the throat, but rather that the motion
seems to explore both internal and external degrees of freedom democratically.
This indicates that cosmic (super)strings formed by inflationary
brane-antibrane annihilation will have sufficient internal motion for the
gravitational wave signals from the string network to be suppressed relative to
the signal from a `standard' cosmic string network.Comment: 31 pages, 8 figure
Contact Term, its Holographic Description in QCD and Dark Energy
In this work we study the well known contact term, which is the key element
in resolving the so-called problem in QCD. We study this term using
the dual Holographic Description. We argue that in the dual picture the contact
term is saturated by the D2 branes which can be interpreted as the tunnelling
events in Minkowski space-time. We quote a number of direct lattice results
supporting this identification. We also argue that the contact term receives a
Casimir -like correction \sim (\Lqcd R)^{-1} rather than naively expected
\exp(-\Lqcd R) when the Minkowski space-time is replaced by
a large but finite manifold with a size . Such a behaviour is consistent
with other QFT-based computations when power like corrections are due to
nontrivial properties of topological sectors of the theory. In holographic
description such a behaviour is due to massless Ramond-Ramond (RR) field living
in the bulk of multidimensional space when power like corrections is a natural
outcome of massless RR field. In many respects the phenomenon is similar to the
Aharonov -Casher effect when the "modular electric field" can penetrate into a
superconductor where the electric field is exponentially screened. The role of
"modular operator" from Aharonov -Casher effect is played by large gauge
transformation operator in 4d QCD, resulting the transparency of the
system to topologically nontrivial pure gauge configurations. We discuss some
profound consequences of our findings. In particular, we speculate that a slow
variation of the contact term in expanding universe might be the main source of
the observed Dark Energy.Comment: Final version to appear in Phys. Rev. D. Comments added on
interpretation of the "topological Casimir effect" from 5d viewpoint where it
can be thought as conventional Casimir effec
Dynamical suppression of non-adiabatic modes
Recent analyses of the WMAP 5-year data constrain possible non-adiabatic
contributions to the initial conditions of CMB anisotropies. Depending upon the
early dynamics of the plasma, the amplitude of the entropic modes can
experience a different suppression by the time of photon decoupling. Explicit
examples of the latter observation are presented both analytically and
numerically when the post-inflationary dynamics is dominated by a stiff
contribution.Comment: 9 pages, four figure
Sequestering the standard model vacuum energy
We propose a very simple reformulation of general relativity, which completely sequesters from gravity all of the vacuum energy from a matter sector, including all loop corrections and renders all contributions from phase transitions automatically small. The idea is to make the dimensional parameters in the matter sector functionals of the 4-volume element of the Universe. For them to be nonzero, the Universe should be finite in spacetime. If this matter is the standard model of particle physics, our mechanism prevents any of its vacuum energy, classical or quantum, from sourcing the curvature of the Universe. The mechanism is consistent with the large hierarchy between the Planck scale, electroweak scale, and curvature scale, and early Universe cosmology, including inflation. Consequences of our proposal are that the vacuum curvature of an old and large universe is not zero, but very small, that w DE ≃−1 is a transient, and that the Universe will collapse in the future
First Principles Calculations of Shock Compressed Fluid Helium
The properties of hot dense helium at megabar pressures were studied with two
first-principles computer simulation techniques, path integral Monte Carlo and
density functional molecular dynamics. The simulations predicted that the
compressibility of helium is substantially increased by electronic excitations
that are present in the hot fluid at thermodynamic equilibrium. A maximum
compression ratio of 5.24(4)-fold the initial density was predicted for 360 GPa
and 150000 K. This result distinguishes helium from deuterium, for which
simulations predicted a maximum compression ratio of 4.3(1). Hugoniot curves
for statically precompressed samples are also discussed.Comment: Accepted to publication in Physical Review Letter
HyRec: A fast and highly accurate primordial hydrogen and helium recombination code
We present a state-of-the-art primordial recombination code, HyRec, including
all the physical effects that have been shown to significantly affect
recombination. The computation of helium recombination includes simple analytic
treatments of hydrogen continuum opacity in the He I 2 1P - 1 1S line, the He
I] 2 3P - 1 1S line, and treats feedback between these lines within the
on-the-spot approximation. Hydrogen recombination is computed using the
effective multilevel atom method, virtually accounting for an infinite number
of excited states. We account for two-photon transitions from 2s and higher
levels as well as frequency diffusion in Lyman-alpha with a full radiative
transfer calculation. We present a new method to evolve the radiation field
simultaneously with the level populations and the free electron fraction. These
computations are sped up by taking advantage of the particular sparseness
pattern of the equations describing the radiative transfer. The computation
time for a full recombination history is ~2 seconds. This makes our code well
suited for inclusion in Monte Carlo Markov chains for cosmological parameter
estimation from upcoming high-precision cosmic microwave background anisotropy
measurements.Comment: Version accepted by PRD. Numerical integration switches adapted to be
well behaved for a wide range of cosmologies (Sec. V E). HyRec is available
at http://www.tapir.caltech.edu/~yacine/hyrec/hyrec.htm
Sequestering effects on and of vacuum decay
We consider phase transitions and their contributions to vacuum energy in the manifestly local theory of vacuum energy sequestering. We demonstrate that the absence of instabilities imposes constraints on the couplings of gravitating and nongravitating sectors, which can be satisfied in a large class of models. We further show by explicit construction that the vacuum energy contributions to the effective cosmological constant in the descendant vacua are generically strongly suppressed by the ratios of space-time volumes of parent and descendant geometries. This means that the cosmological constant in de Sitter descendant vacua remains insensitive to phase transitions which may have occurred in the course of its cosmic history
- …