50,529 research outputs found

    Breakdown of adiabatic invariance in spherical tokamaks

    Get PDF
    Thermal ions in spherical tokamaks have two adiabatic invariants: the magnetic moment and the longitudinal invariant. For hot ions, variations in magnetic-field strength over a gyro period can become sufficiently large to cause breakdown of the adiabatic invariance. The magnetic moment is more sensitive to perturbations than the longitudinal invariant and there exists an intermediate regime, super-adiabaticity, where the longitudinal invariant remains adiabatic, but the magnetic moment does not. The motion of super-adiabatic ions remains integrable and confinement is thus preserved. However, above a threshold energy, the longitudinal invariant becomes non-adiabatic too, and confinement is lost as the motion becomes chaotic. We predict beam ions in present-day spherical tokamaks to be super-adiabatic but fusion alphas in proposed burning-plasma spherical tokamaks to be non-adiabatic.Comment: 6 pages, 8 figure

    Similarity-Aware Spectral Sparsification by Edge Filtering

    Full text link
    In recent years, spectral graph sparsification techniques that can compute ultra-sparse graph proxies have been extensively studied for accelerating various numerical and graph-related applications. Prior nearly-linear-time spectral sparsification methods first extract low-stretch spanning tree from the original graph to form the backbone of the sparsifier, and then recover small portions of spectrally-critical off-tree edges to the spanning tree to significantly improve the approximation quality. However, it is not clear how many off-tree edges should be recovered for achieving a desired spectral similarity level within the sparsifier. Motivated by recent graph signal processing techniques, this paper proposes a similarity-aware spectral graph sparsification framework that leverages efficient spectral off-tree edge embedding and filtering schemes to construct spectral sparsifiers with guaranteed spectral similarity (relative condition number) level. An iterative graph densification scheme is introduced to facilitate efficient and effective filtering of off-tree edges for highly ill-conditioned problems. The proposed method has been validated using various kinds of graphs obtained from public domain sparse matrix collections relevant to VLSI CAD, finite element analysis, as well as social and data networks frequently studied in many machine learning and data mining applications

    Variational calculations for resonance oscillations of inhomogeneous plasmas

    Get PDF
    The electrostatic resonance properties of an inhomogeneous plasma column are reported by application of the Rayleigh-Ritz method. A description of the rf equation of motion and pressure term that expresses the system of equations in Euler-Lagrange form is presented. The Rayleigh-Ritz procedure is applied to the corresponding Lagrangian to obtain approximate resonance frequencies and eigenfunctions. An appropriate set of trial coordinate functions is defined, which leads to frequency and eigenfunction estimates

    The Temporal and Spectral Characteristics of "Fast Rise and Exponential Decay" Gamma-Ray Burst Pulses

    Full text link
    In this paper we have analyzed the temporal and spectral behavior of 52 Fast Rise and Exponential Decay (FRED) pulses in 48 long-duration gamma-ray bursts (GRBs) observed by the CGRO/BATSE, using a pulse model with two shape parameters and the Band model with three shape parameters, respectively. It is found that these FRED pulses are distinguished both temporally and spectrally from those in long-lag pulses. Different from these long-lag pulses only one parameter pair indicates an evident correlation among the five parameters, which suggests that at least ∼\sim4 parameters are needed to model burst temporal and spectral behavior. In addition, our studies reveal that these FRED pulses have correlated properties: (i) long-duration pulses have harder spectra and are less luminous than short-duration pulses; (ii) the more asymmetric the pulses are the steeper the evolutionary curves of the peak energy (EpE_{p}) in the νfν\nu f_{\nu} spectrum within pulse decay phase are. Our statistical results give some constrains on the current GRB models.Comment: 18 pages, 7 figures, accepted for publication in the Astrophysical Journa

    Establishing the Relative Merits of Interior and Spoke-Type Permanent-Magnet Machines With Ferrite or NdFeB Through Systematic Design Optimization

    Get PDF
    In this paper, a multiobjective design optimization method combining design-of-experiments techniques and differential-evolution algorithms is presented. The method was implemented and utilized in order to provide practical engineering insights for the optimal design of interior and spoke-type permanent-magnet machines. Two combinations with 12 slots and 8 poles and 12 slots and 10 poles, respectively, have been studied in conjunction with rare-earth neodymium-iron-boron (NdFeB) and ferrites. As part of the optimization process, a computationally efficient finite-element electromagnetic analysis was employed for estimating the performance of thousands of candidate designs. Three optimization objectives were concurrently considered for minimum total material cost, power losses, and torque ripple, respectively. Independent variables were considered for both the stator and rotor geometries. A discussion based on a systematic comparison is included, showing, among other things and despite common misconception, that comparable cost versus loss Paretos can be achieved with any of the rotor topologies studied
    • …
    corecore