20,644 research outputs found
Scattering on two Aharonov-Bohm vortices with opposite fluxes
The scattering of an incident plane wave on two Aharonov-Bohm vortices with
opposite fluxes is considered in detail. The presence of the vortices imposes
non-trivial boundary conditions for the partial waves on a cut joining the two
vortices. These conditions result in an infinite system of equations for
scattering amplitudes between incoming and outgoing partial waves, which can be
solved numerically. The main focus of the paper is the analytic determination
of the scattering amplitude in two limits, the small flux limit and the limit
of small vortex separation. In the latter limit the dominant contribution comes
from the S-wave amplitude. Calculating it, however, still requires solving an
infinite system of equations, which is achieved by the Riemann-Hilbert method.
The results agree well with the numerical calculations
Multi-aspect, robust, and memory exclusive guest os fingerprinting
Precise fingerprinting of an operating system (OS) is critical to many security and forensics applications in the cloud, such as virtual machine (VM) introspection, penetration testing, guest OS administration, kernel dump analysis, and memory forensics. The existing OS fingerprinting techniques primarily inspect network packets or CPU states, and they all fall short in precision and usability. As the physical memory of a VM always exists in all these applications, in this article, we present OS-Sommelier+, a multi-aspect, memory exclusive approach for precise and robust guest OS fingerprinting in the cloud. It works as follows: given a physical memory dump of a guest OS, OS-Sommelier+ first uses a code hash based approach from kernel code aspect to determine the guest OS version. If code hash approach fails, OS-Sommelier+ then uses a kernel data signature based approach from kernel data aspect to determine the version. We have implemented a prototype system, and tested it with a number of Linux kernels. Our evaluation results show that the code hash approach is faster but can only fingerprint the known kernels, and data signature approach complements the code signature approach and can fingerprint even unknown kernels
Upper Pseudogap Phase: Magnetic Characterizations
It is proposed that the upper pseudogap phase (UPP) observed in the high-Tc
cuprates correspond to the formation of spin singlet pairing under the bosonic
resonating-valence-bond (RVB) description. We present a series of evidence in
support of such a scenario based on the calculated magnetic properties
including uniform spin susceptibility, spin-lattice and spin-echo relaxation
rates, which consistently show that strong spin correlations start to develop
upon entering the UPP, being enhanced around the momentum (\pi, \pi) while
suppressed around (0, 0). The phase diagram in the parameter space of doping
concentration, temperature, and external magnetic field, is obtained based on
the the bosonic RVB theory. In particular, the competition between the Zeeman
splitting and singlet pairing determines a simple relation between the
"critical" magnetic field, H_{PG}, and characteristic temperature scale, T0, of
the UPP. We also discuss the magnetic behavior in the lower pseudogap phase at
a temperature Tv lower than T0, which is characterized by the formation of
Cooper pair amplitude where the low-lying spin fluctuations get suppressed at
both (0, 0) and (\pi, \pi). Properties of the UPP involving charge channels
will be also briefly discussed.Comment: 11 pages, 5 figures, final version to appear in PR
A Cosmological Model with Dark Spinor Source
In this paper, we discuss the system of Friedman-Robertson-Walker metric
coupling with massive nonlinear dark spinors in detail, where the thermodynamic
movement of spinors is also taken into account. The results show that, the
nonlinear potential of the spinor field can provide a tiny negative pressure,
which resists the Universe to become singular. The solution is oscillating in
time and closed in space, which approximately takes the following form
g_{\mu\nu}=\bar R^2(1-\delta\cos t)^2\diag(1,-1,-\sin^2r ,-\sin^2r
\sin^2\theta), with light year, and
. The present time is about .Comment: 13 pages, no figure, to appear in IJMP
Strain relaxation in InGaN/GaN micro-pillars evidenced by high resolution cathodoluminescence hyperspectral imaging
A size-dependent strain relaxation and its effects on the optical properties of InGaN/GaN multiple quantum wells (QWs) in micro-pillars have been investigated through a combination of high spatial resolution cathodoluminescence (CL) hyperspectral imaging and numerical modeling. The pillars have diameters (d) ranging from 2 to 150 μm and were fabricated from a III-nitride light-emitting diode (LED) structure optimized for yellow-green emission at ∼560 nm. The CL mapping enables us to investigate strain relaxation in these pillars on a sub-micron scale and to confirm for the first time that a narrow (≤2 μm) edge blue-shift occurs even for the large InGaN/GaN pillars (d > 10 μm). The observed maximum blue-shift at the pillar edge exceeds 7 nm with respect to the pillar centre for the pillars with diameters in the 2–16 μm range. For the smallest pillar (d = 2 μm), the total blue-shift at the edge is 17.5 nm including an 8.2 nm “global” blue-shift at the pillar centre in comparison with the unetched wafer. By using a finite element method with a boundary condition taking account of a strained GaN buffer layer which was neglected in previous simulation works, the strain distribution in the QWs of these pillars was simulated as a function of pillar diameter. The blue-shift in the QWs emission wavelength was then calculated from the strain-dependent changes in piezoelectric field, and the consequent modification of transition energy in the QWs. The simulation and experimental results agree well, confirming the necessity for considering the strained buffer layer in the strain simulation. These results provide not only significant insights into the mechanism of strain relaxation in these micro-pillars but also practical guidance for design of micro/nano LEDs
- …