9,341 research outputs found
The Shigella ProU system is required for osmotic tolerance and virulence : Shigella ProU in osmotic tolerance and virulence
To cope with hyperosmotic stress encountered in the environments and in the host, the pathogenic as well as non-pathogenic microbes use diverse transport systems to obtain osmoprotectants. To study the role of Shigella sonnei ProU system in response to hyperosmotic stress and virulence, we constructed deletion and complementation strains of proV and used an RNAi approach to silence the whole ProU operon. We compared the response between wild type and the mutants to the hyperosmotic pressure in vitro, and assessed virulence properties of the mutants using gentamicin protection assay as well as Galleria mellonella moth larvae model. In response to osmotic stress by either NaCl or KCl, S. sonnei highly up-regulates transcription of proVWX genes. Supplementation of betaine greatly elevates the growth of the wild type S. sonnei but not the proV mutants in M9 medium containing 0.2 M NaCl or 0.2 M KCl. The proV mutants are also defective in intracellular growth compared with the wild type. The moth larvae model of G. mellonella shows that either deletion of proV gene or knockdown of proVWX transcripts by RNAi significantly attenuates virulence. ProU system in S. sonnei is required to cope with osmotic stress for survival and multiplication in vitro and ex vivo, and for infection
Criterion for transformation of transverse domain wall to vortex or antivortex wall in soft magnetic thin-film nanostripes
We report on the criterion for the dynamic transformation of the internal
structure of moving domain walls (DWs) in soft magnetic thin-film nanostripes
above the Walker threshold field, Hw. In order for the process of
transformation from transverse wall (TW) to vortex wall (VW) or antivortex wall
(AVW) occurs, the edge-soliton core of the TW-type DW should grow sufficiently
to the full width at half maximum of the out-of-plane magnetizations of the
core area of the stabilized vortex (or antivortex) by moving inward along the
transverse (width) direction. Upon completion of the nucleation of the vortex
(antivortex) core, the VW (AVW) is stabilized, and then its core accompanies
the gyrotropic motion in a potential well (hill) of a given nanostripe. Field
strengths exceeding the Hw, which is the onset field of DW velocity breakdown,
are not sufficient but necessary conditions for dynamic DW transformation
Variance Decomposition Sensitivity Analysis of a Passive Residual Heat Removal System Model
International audiencePassive systems are central in the safety design of new generation nuclear power plants (NPPs). In this paper, the variance decomposition method is adopted to identify key parameters which influence the uncertain behavior of the passive Residual Heat Removal system (RHRs) in the High Temperature Gas-Cooled Reactor (HTGR)
First Principles Studies on 3-Dimentional Strong Topological Insulators: Bi2Te3, Bi2Se3 and Sb2Te3
Bi2Se3, Bi2Te3 and Sb2Te3 compounds are recently predicted to be
3-dimentional (3D) strong topological insulators. In this paper, based on
ab-initio calculations, we study in detail the topological nature and the
surface states of this family compounds. The penetration depth and the
spin-resolved Fermi surfaces of the surface states will be analyzed. We will
also present an procedure, from which highly accurate effective Hamiltonian can
be constructed, based on projected atomic Wannier functions (which keep the
symmetries of the systems). Such Hamiltonian can be used to study the
semi-infinite systems or slab type supercells efficiently. Finally, we discuss
the 3D topological phase transition in Sb2(Te1-xSex)3 alloy system.Comment: 8 pages,17 figure
Learning Shape Priors for Single-View 3D Completion and Reconstruction
The problem of single-view 3D shape completion or reconstruction is
challenging, because among the many possible shapes that explain an
observation, most are implausible and do not correspond to natural objects.
Recent research in the field has tackled this problem by exploiting the
expressiveness of deep convolutional networks. In fact, there is another level
of ambiguity that is often overlooked: among plausible shapes, there are still
multiple shapes that fit the 2D image equally well; i.e., the ground truth
shape is non-deterministic given a single-view input. Existing fully supervised
approaches fail to address this issue, and often produce blurry mean shapes
with smooth surfaces but no fine details.
In this paper, we propose ShapeHD, pushing the limit of single-view shape
completion and reconstruction by integrating deep generative models with
adversarially learned shape priors. The learned priors serve as a regularizer,
penalizing the model only if its output is unrealistic, not if it deviates from
the ground truth. Our design thus overcomes both levels of ambiguity
aforementioned. Experiments demonstrate that ShapeHD outperforms state of the
art by a large margin in both shape completion and shape reconstruction on
multiple real datasets.Comment: ECCV 2018. The first two authors contributed equally to this work.
Project page: http://shapehd.csail.mit.edu
Ultra-broadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab
We present an ultra broadband thin-film infrared absorber made of saw-toothed
anisotropic metamaterial. Absorbtivity of higher than 95% at normal incidence
is supported in a wide range of frequencies, where the full absorption width at
half maximum is about 86%. Such property is retained well at a very wide range
of incident angles too. Light of shorter wavelengths are harvested at upper
parts of the sawteeth of smaller widths, while light of longer wavelengths are
trapped at lower parts of larger tooth widths. This phenomenon is explained by
the slowlight modes in anisotropic metamaterial waveguide. Our study can be
applied in the field of designing photovoltaic devices and thermal emitters.Comment: 12 pages, 4 picture
Dirac quasinormal modes of a Schwarzschild black hole surrounded by free static spherically symmetric quintessence
We evaluate the quasinormal modes of massless Dirac perturbation in a
Schwarzschild black hole surrounded by the free static spherically symmetric
quintessence by using the third-order WKB approximation. The result shows that
due to the presence of quintessence, the massless field damps more slowly. The
real part of the quasinormal modes increases and the the absolute value of the
imaginary part increases when the state parameter increases. In other
words, the massless Dirac field decays more rapidly for the larger . And
the peak value of potential barrier gets higher as increases and the
location of peak moves along the right for fixed .Comment: 7 pages, 4 figure
- …
