9,341 research outputs found

    The Shigella ProU system is required for osmotic tolerance and virulence : Shigella ProU in osmotic tolerance and virulence

    Get PDF
    To cope with hyperosmotic stress encountered in the environments and in the host, the pathogenic as well as non-pathogenic microbes use diverse transport systems to obtain osmoprotectants. To study the role of Shigella sonnei ProU system in response to hyperosmotic stress and virulence, we constructed deletion and complementation strains of proV and used an RNAi approach to silence the whole ProU operon. We compared the response between wild type and the mutants to the hyperosmotic pressure in vitro, and assessed virulence properties of the mutants using gentamicin protection assay as well as Galleria mellonella moth larvae model. In response to osmotic stress by either NaCl or KCl, S. sonnei highly up-regulates transcription of proVWX genes. Supplementation of betaine greatly elevates the growth of the wild type S. sonnei but not the proV mutants in M9 medium containing 0.2 M NaCl or 0.2 M KCl. The proV mutants are also defective in intracellular growth compared with the wild type. The moth larvae model of G. mellonella shows that either deletion of proV gene or knockdown of proVWX transcripts by RNAi significantly attenuates virulence. ProU system in S. sonnei is required to cope with osmotic stress for survival and multiplication in vitro and ex vivo, and for infection

    Criterion for transformation of transverse domain wall to vortex or antivortex wall in soft magnetic thin-film nanostripes

    Get PDF
    We report on the criterion for the dynamic transformation of the internal structure of moving domain walls (DWs) in soft magnetic thin-film nanostripes above the Walker threshold field, Hw. In order for the process of transformation from transverse wall (TW) to vortex wall (VW) or antivortex wall (AVW) occurs, the edge-soliton core of the TW-type DW should grow sufficiently to the full width at half maximum of the out-of-plane magnetizations of the core area of the stabilized vortex (or antivortex) by moving inward along the transverse (width) direction. Upon completion of the nucleation of the vortex (antivortex) core, the VW (AVW) is stabilized, and then its core accompanies the gyrotropic motion in a potential well (hill) of a given nanostripe. Field strengths exceeding the Hw, which is the onset field of DW velocity breakdown, are not sufficient but necessary conditions for dynamic DW transformation

    Variance Decomposition Sensitivity Analysis of a Passive Residual Heat Removal System Model

    No full text
    International audiencePassive systems are central in the safety design of new generation nuclear power plants (NPPs). In this paper, the variance decomposition method is adopted to identify key parameters which influence the uncertain behavior of the passive Residual Heat Removal system (RHRs) in the High Temperature Gas-Cooled Reactor (HTGR)

    First Principles Studies on 3-Dimentional Strong Topological Insulators: Bi2Te3, Bi2Se3 and Sb2Te3

    Full text link
    Bi2Se3, Bi2Te3 and Sb2Te3 compounds are recently predicted to be 3-dimentional (3D) strong topological insulators. In this paper, based on ab-initio calculations, we study in detail the topological nature and the surface states of this family compounds. The penetration depth and the spin-resolved Fermi surfaces of the surface states will be analyzed. We will also present an procedure, from which highly accurate effective Hamiltonian can be constructed, based on projected atomic Wannier functions (which keep the symmetries of the systems). Such Hamiltonian can be used to study the semi-infinite systems or slab type supercells efficiently. Finally, we discuss the 3D topological phase transition in Sb2(Te1-xSex)3 alloy system.Comment: 8 pages,17 figure

    Learning Shape Priors for Single-View 3D Completion and Reconstruction

    Full text link
    The problem of single-view 3D shape completion or reconstruction is challenging, because among the many possible shapes that explain an observation, most are implausible and do not correspond to natural objects. Recent research in the field has tackled this problem by exploiting the expressiveness of deep convolutional networks. In fact, there is another level of ambiguity that is often overlooked: among plausible shapes, there are still multiple shapes that fit the 2D image equally well; i.e., the ground truth shape is non-deterministic given a single-view input. Existing fully supervised approaches fail to address this issue, and often produce blurry mean shapes with smooth surfaces but no fine details. In this paper, we propose ShapeHD, pushing the limit of single-view shape completion and reconstruction by integrating deep generative models with adversarially learned shape priors. The learned priors serve as a regularizer, penalizing the model only if its output is unrealistic, not if it deviates from the ground truth. Our design thus overcomes both levels of ambiguity aforementioned. Experiments demonstrate that ShapeHD outperforms state of the art by a large margin in both shape completion and shape reconstruction on multiple real datasets.Comment: ECCV 2018. The first two authors contributed equally to this work. Project page: http://shapehd.csail.mit.edu

    Ultra-broadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab

    Get PDF
    We present an ultra broadband thin-film infrared absorber made of saw-toothed anisotropic metamaterial. Absorbtivity of higher than 95% at normal incidence is supported in a wide range of frequencies, where the full absorption width at half maximum is about 86%. Such property is retained well at a very wide range of incident angles too. Light of shorter wavelengths are harvested at upper parts of the sawteeth of smaller widths, while light of longer wavelengths are trapped at lower parts of larger tooth widths. This phenomenon is explained by the slowlight modes in anisotropic metamaterial waveguide. Our study can be applied in the field of designing photovoltaic devices and thermal emitters.Comment: 12 pages, 4 picture

    Dirac quasinormal modes of a Schwarzschild black hole surrounded by free static spherically symmetric quintessence

    Full text link
    We evaluate the quasinormal modes of massless Dirac perturbation in a Schwarzschild black hole surrounded by the free static spherically symmetric quintessence by using the third-order WKB approximation. The result shows that due to the presence of quintessence, the massless field damps more slowly. The real part of the quasinormal modes increases and the the absolute value of the imaginary part increases when the state parameter wqw_q increases. In other words, the massless Dirac field decays more rapidly for the larger wqw_q. And the peak value of potential barrier gets higher as k|k| increases and the location of peak moves along the right for fixed wqw_q.Comment: 7 pages, 4 figure
    corecore