2,101 research outputs found

    Business model and ESG pillars: The impacts on banking default risk

    Get PDF
    The recent banks' failures have highlighted the importance of improving banking sector supervision, emphasizing the need to adopt a holistic approach to risk assessment based on an evaluation of a bank's business model (BBM) that combines financial (e.g., bank's balance data) and non-financial information (e.g., bank's ESG performance). In this study, we explore the joint effect of BBM and their environmental (ENV), social (SOC), and governance (GOV) pillars performance on banks' riskiness profile. The study uses a sample of 639 EU banks from 2013 to 2022 and applied a random effects model. Our findings suggest wholesale and retail banks could mitigate default risk, enhancing their ENV pillar performance. Differently, investment banks are encouraged to improve their governance best practices and structure to take advantage in terms of riskiness reduction. These results remain consistent after a series of robustness tests, including the 2SLS model and the Arellano coefficient estimation. Our paper offers practical implications for banking supervisory authorities and practitioners, encouraging to adopt a diversified ESG investment strategy according to bank-specific business models

    Tomato chocolate spot virus, a member of a new torradovirus species that causes a necrosis-associated disease of tomato in Guatemala

    Get PDF
    Tomatoes in Guatemala have been affected by a new disease, locally known as “mancha de chocolate” (chocolate spot). The disease is characterized by distinct necrotic spots on leaves, stems and petioles that eventually expand and cause a dieback of apical tissues. Samples from symptomatic plants tested negative for infection by tomato spotted wilt virus, tobacco streak virus, tobacco etch virus and other known tomato-infecting viruses. A virus-like agent was sap-transmitted from diseased tissue to Nicotiana benthamiana and, when graft-transmitted to tomato, this agent induced chocolate spot symptoms. This virus-like agent also was sap-transmitted to Datura stramonium and Nicotiana glutinosa, but not to a range of non-solanaceous indicator plants. Icosahedral virions ~28–30 nm in diameter were purified from symptomatic N. benthamiana plants. When rub-inoculated onto leaves of N. benthamiana plants, these virions induced symptoms indistinguishable from those in N. benthamiana plants infected with the sap-transmissible virus associated with chocolate spot disease. Tomatoes inoculated with sap or grafted with shoots from N. benthamiana plants infected with purified virions developed typical chocolate spot symptoms, consistent with this virus being the causal agent of the disease. Analysis of nucleic acids associated with purified virions of the chocolate-spot-associated virus, revealed a genome composed of two single-stranded RNAs of ~7.5 and ~5.1 kb. Sequence analysis of these RNAs revealed a genome organization similar to recently described torradoviruses, a new group of picorna-like viruses causing necrosis-associated diseases of tomatoes in Europe [tomato torrado virus (ToTV)] and Mexico [tomato apex necrosis virus (ToANV) and tomato marchitez virus (ToMarV)]. Thus, the ~7.5 kb and ~5.1 kb RNAs of the chocolate-spot-associated virus corresponded to the torradovirus RNA1 and RNA2, respectively; however, sequence comparisons revealed 64–83% identities with RNA1 and RNA2 sequences of ToTV, ToANV and ToMarV. Together, these results indicate that the chocolate-spot-associated virus is a member of a distinct torradovirus species and, thus, another member of the recently established genus Torradovirus in the family Secoviridae. The name tomato chocolate spot virus is proposed

    Unconditionally Secure Oblivious Transfer from Real Network Behavior

    Get PDF
    Secure multi-party computation (MPC) deals with the problem of shared computation between parties that do not trust each other: they are interested in performing a joint task, but they also want to keep their respective inputs private. In a world where an ever-increasing amount of computation is outsourced, for example to the cloud, MPC is a subject of crucial importance. However, unconditionally secure MPC protocols have never found practical application: the lack of realistic noisy channel models, that are required to achieve security against computationally unbounded adversaries, prevents implementation over real-world, standard communication protocols. In this paper we show for the first time that the inherent noise of wireless communication can be used to build multi-party protocols that are secure in the information-theoretic setting. In order to do so, we propose a new noisy channel, the Delaying-Erasing Channel (DEC), that models network communication in both wired and wireless contexts. This channel integrates erasures and delays as sources of noise, and models reordered, lost and corrupt packets. We provide a protocol that uses the properties of the DEC to achieve Oblivious Transfer (OT), a fundamental primitive in cryptography that implies any secure computation. In order to show that the DEC reflects the behavior of wireless communication, we run an experiment over a 802.11n wireless link, and gather extensive experimental evidence supporting our claim. We also analyze the collected data in order to estimate the level of security that such a network can provide in our model. We show the flexibility of our construction by choosing for our implementation of OT a standard communication protocol, the Real-time Transport Protocol (RTP). Since the RTP is used in a number of multimedia streaming and teleconference applications, we can imagine a wide variety of practical uses and application settings for our construction

    Supersonic Retropulsion Surface Preparation of Carbon Fiber Reinforced Epoxy Composites for Adhesive Bonding

    Get PDF
    Surface preparation is widely recognized as a key step to producing robust and predictable bonds in a precise and reproducible manner. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, can lack precision and reproducibility, which can lead to variation in surface properties and subsequent bonding performance. The use of a laser to ablate composite surface resin can provide an efficient, precise, and reproducible means of preparing composite surfaces for adhesive bonding. Advantages include elimination of physical waste (i.e., grit media and sacrificial peel ply layers that ultimately require disposal), reduction in process variability due to increased precision (e.g. increased reproducibility), and automation of surface preparation, all of which improve reliability and process control. This paper describes a Nd:YAG laser surface preparation technique for composite substrates and the mechanical performance and failure modes of bonded laminates thus prepared. Additionally, bonded specimens were aged in a hot, wet environment for approximately one year and subsequently mechanically tested. The results of a one year hygrothermal aging study will be presented

    A novel experimental approach for the detection of the dynamic Casimir effect

    Full text link
    The Casimir effect is a well-known macroscopic consequence of quantum vacuum fluctuations, but whereas the static effect (Casimir force) has long been observed experimentally, the dynamic Casimir effect is up to now undetected. From an experimental viewpoint a possible detection would imply the vibration of a mirror at gigahertz frequencies. Mechanical motions at such frequencies turn out to be technically unfeasible. Here we present a different experimental scheme where mechanical motions are avoided, and the results of laboratory tests showing that the scheme is practically feasible. We think that at present this approach gives the only possibility of detecting this phenomenon.Comment: Submitted to the Physical Review Letters. RevTeX. 4 pages, 2 figure

    Laser Surface Preparation of Epoxy Composites for Secondary Bonding: Optimization of Ablation Depth

    Get PDF
    Surface preparation has been identified as one of the most critical aspects of attaining predictable and reliable adhesive bonds. Energetic processes such as laser ablation or plasma treatment are amenable to automation and are easily monitored and adjusted for controlled surface preparation. A laser ablation process was developed to accurately remove a targeted depth of resin, approximately 0.1 to 20 micrometers, from a carbon fiber reinforced epoxy composite surface while simultaneously changing surface chemistry and creating micro-roughness. This work demonstrates the application of this process to prepare composite surfaces for bonding without exposing or damaging fibers on the surface. Composite panels were prepared in an autoclave and had a resin layer approximately 10 micrometers thick above the fiber reinforcement. These composite panels were laser surface treated using several conditions, fabricated into bonded panels and hygrothermally aged. Bond performance of aged, experimental specimens was compared with grit blast surface treated specimens using a modified double cantilever beam test that enabled accelerated saturation of the specimen with water. Comparison of bonded specimens will be used to determine how ablation depth may affect average fracture energies and failure modes

    Paying the Guard: An Entry-Guard-Based Payment System for Tor

    Get PDF
    When choosing the three relays that compose a circuit, Tor selects the first hop among a restricted number of relays called entry guards, pre-selected by the user himself. The reduced number of entry guards, that until recently was fixed to three, helps in mitigating the effects of several traffic analysis attacks. However, recent literature indicates that the number should be further reduced, and the time during which the user keeps the relays as guards increased. Therefore, developers of Tor recently proposed selecting only one entry guard, which is to be used by the user for all circuits and for a prolonged period of time (nine months). While this design choice was made to increase the security of the protocol, it also opens an unprecedented opportunity for a market mechanism where relays get paid for traffic by the users. In this paper, we propose to use the entry guard as the point-of-sale: users subscribe to their entry guard of choice, and deposit an amount that will be used for paying for the circuits. From the entry guard, income is then distributed to the other relays included in circuits through an inter-relay accounting system. While the user may pay the entry guard using BitCoins, or any other anonymous payment system, the relays exchange I Owe You (IOU) certificates during communication, and settle their balances only at synchronized, later points in time. This novel deferred payment approach overcomes the weaknesses of the previously proposed Tor payment mechanisms: we separate the user’s payment from the inter-relay payments, and we effectively unlink both from the chosen path, thus preserving the secrecy of the circuit

    Further Investigation Into the Use of Laser Surface Preparation of Ti-6Al-4V Alloy for Adhesive Bonding

    Get PDF
    Adhesive bonding offers many advantages over mechanical fastening, but requires robust materials and processing methodologies before it can be incorporated in primary structures for aerospace applications. Surface preparation is widely recognized as one of the key steps to producing robust and predictable bonds. This report documents an ongoing investigation of a surface preparation technique based on Nd:YAG laser ablation as a replacement for the chemical etch and/or abrasive processes currently applied to Ti-6Al-4V alloys. Laser ablation imparts both topographical and chemical changes to a surface that can lead to increased bond durability. A laser based process provides an alternative to chemical-immersion, manual abrasion, and grit blast process steps which are expensive, hazardous, environmentally unfriendly, and less precise. In addition, laser ablation is amenable to process automation, which can improve reproducibility to meet quality standards for surface preparation. An update on work involving adhesive property testing, surface characterization, surface stability, and the effect of laser surface treatment on fatigue behavior is presented. Based on the tests conducted, laser surface treatment is a viable replacement for the immersion chemical surface treatment processes. Testing also showed that the fatigue behavior of the Ti-6Al-4V alloy is comparable for surfaces treated with either laser ablation or chemical surface treatment

    Contamination and Surface Preparation Effects on Composite Bonding

    Get PDF
    Results presented here demonstrate the effect of several prebond surface contaminants (hydrocarbon, machining fluid, latex, silicone, peel ply residue, release film) on bond quality, as measured by fracture toughness and failure modes of carbon fiber reinforced epoxy substrates bonded in secondary and co-bond configurations with paste and film adhesives. Additionally, the capability of various prebond surface property measurement tools to detect contaminants and potentially predict subsequent bond performance of three different adhesives is also shown. Surface measurement methods included water contact angle, Dyne solution wettability, optically stimulated electron emission spectroscopy, surface free energy, inverse gas chromatography, and Fourier transform infrared spectroscopy with chemometrics analysis. Information will also be provided on the effectiveness of mechanical and energetic surface treatments to recover a bondable surface after contamination. The benefits and drawbacks of the various surface analysis tools to detect contaminants and evaluate prebond surfaces after surface treatment were assessed as well as their ability to correlate to bond performance. Surface analysis tools were also evaluated for their potential use as in-line quality control of adhesive bonding parameters in the manufacturing environment
    • …
    corecore