21 research outputs found

    A mutation in a rare type of intron in a sodium-channel gene results in aberrant splicing and causes myotonia

    No full text
    Many mutations in the skeletal-muscle sodium-channel gene SCN4A have been associated with myotonia and/or periodic paralysis, but so far all of these mutations are located in exons. We found a patient with myotonia caused by a deletion/insertion located in intron 21 of SCN4A, which is an AT-AC type II intron. This is a rare class of introns that, despite having AT-AC boundaries, are spliced by the major or U2-type spliceosome. The patient's skeletal muscle expressed aberrantly spliced SCN4A mRNA isoforms generated by activation of cryptic splice sites. In addition, genetic suppression experiments using an SCN4A minigene showed that the mutant 5' splice site has impaired binding to the U1 and U6 snRNPs, which are the cognate factors for recognition of U2-type 5' splice sites. One of the aberrantly spliced isoforms encodes a channel with a 35-amino acid insertion in the cytoplasmic loop between domains III and IV of Nav1.4. The mutant channel exhibited a marked disruption of fast inactivation, and a simulation in silico showed that the channel defect is consistent with the patient's myotonic symptoms. This is the first report of a disease-associated mutation in an AT-AC type II intron, and also the first intronic mutation in a voltage-gated ion channel gene showing a gain-of-function defect

    A Binding Potency Assay for Pritumumab and Ecto-Domain Vimentin.

    No full text
    Pritumumab, a natural human IgG1kappa mAb, was isolated from the regional lymph node of a patient with cervical cancer. This antibody has been reported to bind the cytoskeletal protein vimentin, and to cell surface expressed vimentin referred to as ecto-domain vimentin (EDV). Here, we report details of the development of a potency of binding assay for pritumumab as a prerequisite before pursuing clinical trials. The enzyme linked immunosorbent assay (ELISA) to detect antibody-binding antigen can serve as a potency assay for release of manufactured samples to be used in clinical studies. Several layers of controls for this assay along with suitability testing for reagents and components of the assay must be developed before the assay can be incorporated for stability testing and release of manufatured samples
    corecore