103 research outputs found

    Nuclear Physics Experiments with Ion Storage Rings

    Get PDF
    In the last two decades a number of nuclear structure and astrophysics experiments were performed at heavy-ion storage rings employing unique experimental conditions offered by such machines. Furthermore, building on the experience gained at the two facilities presently in operation, several new storage ring projects were launched worldwide. This contribution is intended to provide a brief review of the fast growing field of nuclear structure and astrophysics research at storage rings.Comment: XVIth International Conference on Electro-Magnetic Isotope Separators and Techniques Related to their Applications, December 2--7, 2012 at Matsue, Japa

    \b{eta}-delayed three-proton decay of 31Ar

    Full text link
    The beta decay of 31Ar, produced by fragmentation of a 36Ar beam at 880 MeV/nucleon, was investigated. Identified ions of 31Ar were stopped in a gaseous time projection chamber with optical readout allowing to record decay events with emission of protons. In addition to \b{eta}-delayed emission of one and two protons we have clearly observed the beta-delayed three-proton branch. The branching ratio for this channel in 31Ar is found to be 0.07(2)%.Comment: 5 pages, 3 figures, submitted to Physical Rev.

    Schottky mass measurements of heavy neutron-rich nuclides in the element range 70\leZ \le79 at the ESR

    Get PDF
    Storage-ring mass spectrometry was applied to neutron-rich 197^{197}Au projectile fragments. Masses of 181,183^{181,183}Lu, 185,186^{185,186}Hf, 187,188^{187,188}Ta, 191^{191}W, and 192,193^{192,193}Re nuclei were measured for the first time. The uncertainty of previously known masses of 189,190^{189,190}W and 195^{195}Os nuclei was improved. Observed irregularities on the smooth two-neutron separation energies for Hf and W isotopes are linked to the collectivity phenomena in the corresponding nuclei.Comment: 10 pages, 9 figures, 2 table

    Hereditary palmoplantar keratoderma - phenotypes and mutations in 64 patients

    Get PDF
    Background Hereditary palmoplantar keratodermas (PPK) represent a heterogeneous group of rare skin disorders with epidermal hyperkeratosis of the palms and soles, with occasional additional manifestations in other tissues. Mutations in at least 69 genes have been implicated in PPK, but further novel candidate genes and mutations are still to be found. Objectives To identify mutations underlying PPK in a cohort of 64 patients. Methods DNA of 48 patients was analysed on a custom-designed in-house panel for 35 PPK genes, and 16 patients were investigated by a diagnostic genetic laboratory either by whole-exome sequencing, gene panels or targeted single-gene sequencing. Results Of the 64 PPK patients, 32 had diffuse (50%), 19 focal (30%) and 13 punctate (20%) PPK. None had striate PPK. Pathogenic mutations in altogether five genes were identified in 31 of 64 (48%) patients, the majority (22/31) with diffuse PPK. Of them, 11 had a mutation in AQP5, five in SERPINB7, four in KRT9 and two in SLURP1. AAGAB mutations were found in nine punctate PPK patients. New mutations were identified in KRT9 and AAGAB. No pathogenic mutations were detected in focal PPK. Variants of uncertain significance (VUS) in PPK-associated and other genes were observed in 21 patients that might explain their PPK. No suggestive pathogenic variants were found for 12 patients. Conclusions Diffuse PPK was the most common (50%) and striate PPK was not observed. We identified pathogenic mutations in 48% of our PPK patients, mainly in five genes: AQP5, AAGAB, KRT9, SERPINB7 and SLURP1.Peer reviewe

    Storage, Accumulation and Deceleration of Secondary Beams for Nuclear Astrophysics

    Get PDF
    Low-energy investigations on rare ion beams are often limited by the available intensity and purity of the ion species in focus. Here, we present the first application of a technique that combines in-flight production at relativistic energies with subsequent secondary beam storage, accumulation and finally deceleration to the energy of interest. Using the FRS and ESR facilities at GSI, this scheme was pioneered to provide a secondary beam of 118^{118}Te52+^{52+} for the measurement of nuclear proton-capture at energies of 6 and 7 MeV/u. The technique provided stored beam intensities of about 10610^6 ions at high purity and brilliance, representing a major step towards low-energy nuclear physics studies using rare ion beams
    corecore