740 research outputs found

    Mechanics of low-angle extensional shear zones at the brittle-ductile transition

    No full text
    Present address : Institut des Sciences de la Terre d'OrlĂ©ans UMR 7327, UniversitĂ© d'OrlĂ©ans, CNRS/INSU, BGRMInternational audienceLow-angle midcrustal ductile shear zones and the related microseismic activity recorded below regions of active extension are seen here as two consequences of strain localization. The feldspar-to-mica reaction which occurs once feldspar grains are fractured is the destabilizing mechanism selected to explain the strain localization. The model problem considered to substantiate these claims is solved by numerical means and combines the simple shear due to the rigid gliding of the upper crust (at the velocity of V s ) and the stretch resulting from the extension of the whole crust (at the velocity V e ). The rheological model accounts for dislocation creep of quartz, feldspar, and mica, the feldspar-to-mica reaction, and its prerequisite, which is the feldspar fracturing detected by the Mohr-Coulomb criterion. The one-dimensional (1-D) solution, which constrains shear bands to be horizontal, shows the depth partitioning in deformation mode between the simple shear of the low-viscosity deep crust and the stretching of the highly viscous midcrust. Strain localization occurs during rapid increase of the shearing velocity V s , corresponding to low values of the velocity ratio V e /V s . The 2-D solution (for V e /V s = 10−3) reveals the development of a periodic system of extensional shear bands, dipping at 30° toward the shearing direction at a depth of 12 to 14 km. Shear bands are formed after less than half a million years at the base of the reaction zone defined by the region where feldspar-to-mica reaction is completed. Shear bands do not propagate to greater depths because the pressure prevents the feldspar from fracturing and thus the reaction to occur. The periodic system of shear bands defines a midcrustal flat weakened zone within which the equivalent shear stress is enhanced by at least a factor of three at the shear band tips. Brittle fracture could thus occur within the midcrustal flat weakened zone, explaining therefore the microseismicity monitored at these depths in regions of active extension

    Improving InSAR geodesy using global atmospheric models

    Get PDF
    Spatial and temporal variations of pressure, temperature and water vapor content in the atmosphere introduce significant confounding delays in Interferometric Synthetic Aperture Radar (InSAR) observations of ground deformation and bias estimatesof regional strain rates. Producing robust estimates of tropospheric delays remains one of the key challenges in increasing the accuracy of ground deformation measurements using InSAR. Recent studies revealed the efficiency of global atmospheric reanalysis to mitigate the impact of tropospheric delays, motivating further exploration of their potential. Here, we explore the effectiveness of these models in several geographic and tectonic settings on both single interferograms and time series analysis products. Both hydrostatic and wet contributions to the phase delay are important to account for. We validate these path delay corrections by comparing with estimates of vertically integrated atmospheric water vapor content derived from the passive multi-spectral imager MERIS, onboard the ENVISAT satellite. Generally, the performance of the prediction depends on the vigor of atmospheric turbulence. We discuss (1) how separating atmospheric and orbital contributions allows one to better measure long wavelength deformation, (2) how atmospheric delays affect measurements of surface deformation following earthquakes and (3) we show that such a method allows us to reduce biases in multi-year strain rate estimates by reducing the influence of unevenly sampled seasonal oscillations of the tropospheric delay

    The Burst-Like Behavior of Aseismic Slip on a Rough Fault: The Creeping Section of the Haiyuan Fault, China

    Get PDF
    Recent observations suggesting the influence of creep on earthquakes nucleation and arrest are strong incentives to investigate the physical mechanisms controlling how active faults slip. We focus here on deriving generic characteristics of shallow creep along the Haiyuan fault, a major strike‐slip fault in China, by investigating the relationship between fault slip and geometry. We use optical images and time series of Synthetic Aperture Radar data to map the surface fault trace and the spatiotemporal distribution of surface slip along the creeping section of the Haiyuan fault. The fault trace roughness shows a power‐law behavior similar to that of the aseismic slip distribution, with a 0.8 roughness exponent, typical of a self‐affine regime. One possible interpretation is that fault geometry controls to some extent the distribution of aseismic slip, as it has been shown previously for coseismic slip along active faults. Creep is characterized by local fluctuations in rates that we define as creep bursts. The potency of creep bursts follows a power‐law behavior similar to the Gutenberg–Richter earthquake distribution, whereas the distribution of bursts velocity is non‐Gaussian, suggesting an avalanche‐like behavior of these slip events. Such similarities with earthquakes and lab experiments lead us to interpret the rich dynamics of creep bursts observed along the Haiyuan fault as resulting from long‐range elastic interactions within the heterogeneous Earth’s crust

    Structural insights into Clostridium perfringens delta toxin pore formation

    Get PDF
    Clostridium perfringens Delta toxin is one of the three hemolysin-like proteins produced by C. perfringens type C and possibly type B strains. One of the others, NetB, has been shown to be the major cause of Avian Nectrotic Enteritis, which following the reduction in use of antibiotics as growth promoters, has become an emerging disease of industrial poultry. Delta toxin itself is cytotoxic to the wide range of human and animal macrophages and platelets that present GM2 ganglioside on their membranes. It has sequence similarity with Staphylococcus aureus ÎČ-pore forming toxins and is expected to heptamerize and form pores in the lipid bilayer of host cell membranes. Nevertheless, its exact mode of action remains undetermined. Here we report the 2.4 Å crystal structure of monomeric Delta toxin. The superposition of this structure with the structure of the phospholipid-bound F component of S. aureus leucocidin (LukF) revealed that the glycerol molecules bound to Delta toxin and the phospholipids in LukF are accommodated in the same hydrophobic clefts, corresponding to where the toxin is expected to latch onto the membrane, though the binding sites show significant differences. From structure-based sequence alignment with the known structure of staphylococcal α-hemolysin, a model of the Delta toxin pore form has been built. Using electron microscopy, we have validated our model and characterized the Delta toxin pore on liposomes. These results highlight both similarities and differences in the mechanism of Delta toxin (and by extension NetB) cytotoxicity from that of the staphylococcal pore-forming toxins

    Stable isotope characterization of pedogenic and lacustrine carbonates from the Chinese Tian Shan: constraints on the Mesozoic - Lower Cenozoic palaeo-environmental evolution

    Get PDF
    International audienceIn the Mesozoic–Cenozoic continental deposits of the Tian Shan area, two main levels containing pedogenic carbonates have been identified on both the southern and northern foothills of the range: one in the Upper Jurassic series and one in the Upper Cretaceous–Lower Palaeocene series. In order to reconstruct the palaeoenvironmental and palaeotopographic characteristics of the Tian Shan area during these two periods, we measured the oxygen and carbon isotope composition of these pedogenic carbonates (calcrete and nodules). The stable isotope compositions are homogeneous: most ή18O values are between 21 and 25‰ and most ή13C values are between −4 and −6‰. No distinction can be made between the calcrete and nodule isotopic compositions. The constancy of isotopic values across the Tian Shan is evidence of a development of these calcification features in similar palaeoenvironmental conditions. The main inference is that no significant relief existed in that area at the Cretaceous−Palaeogene boundary, implying that most of the present relief developed later, during the Cenozoic. In addition to the pedogenic carbonates, few beds of limestones interstratified in the Jurassic series of the southern foothills display oxygen and carbon isotope compositions typical of lacustrine carbonates, ruling out brackish water incursion at that period in the regio

    High interseismic coupling in the Eastern Makran (Pakistan) subduction zone

    Get PDF
    Estimating the extent of interseismic coupling along subduction zone megathrusts is essential for quantitative assessments of seismic and tsunami hazards. Up to now, quantifying the seismogenic potential of the eastern Makran subduction zone at the northern edge of the Indian ocean has remained elusive due to a paucity of geodetic observations. Furthermore, non-tectonic processes obscure the signature of accumulating elastic strain. Historical earthquakes of magnitudes greater than 7 have been reported. In particular, the 1945 Mw 8.1 earthquake resulted in a significant tsunami that swept the shores of the Arabian Sea and the Indian Ocean. A quantitative estimate of elastic strain accumulation along the subduction plate boundary in eastern Makran is needed to confront previous indirect and contradictory conclusions about the seismic potential in the region. Here, we infer the distribution of interseismic coupling on the eastern Makran megathrust from time series of satellite Interferometric Synthetic Aperture Radar (InSAR) images acquired between 2003 and 2010, applying a consistent series of corrections to extract the low amplitude, long wavelength deformation signal associated with elastic strain on the megathrust. We find high interseismic coupling (i.e. the megathrust does not slip and elastic strain accumulates) in the central section of eastern Makran, where the 1945 earthquake occurred, while lower coupling coincides spatially with the subduction of the Sonne Fault Zone. The inferred accumulation of elastic strain since the 1945 earthquake is consistent with the future occurrence of magnitude 7+ earthquakes and we cannot exclude the possibility of a multi-segment rupture (Mw 8+). However, the likelihood for such scenarios might be modulated by partitioning of plate convergence between slip on the megathrust and internal deformation of the overlying, actively deforming, accretionary wedge

    New Radar Interferometric Time Series Analysis Toolbox Released

    Get PDF
    Interferometric synthetic aperture radar (InSAR) has become an important geodetic tool for measuring deformation of Earth’s surface due to various geophysical phenomena, including slip on earthquake faults, subsurface migration of magma, slow‐moving landslides, movement of shallow crustal fluids (e.g., water and oil), and glacier flow. Airborne and spaceborne synthetic aperture radar (SAR) instruments transmit microwaves toward Earth’s surface and detect the returning reflected waves. The phase of the returned wave depends on the distance between the satellite and the surface, but it is also altered by atmospheric and other effects. InSAR provides measurements of surface deformation by combining amplitude and phase information from two SAR images of the same location taken at different times to create an interferogram. Several existing open‐source analysis tools [Rosen et al., 2004; Rosen et al., 2011; Kampes et al., 2003 ; Sandwell et al., 2011] enable scientists to exploit observations from radar satellites acquired at two different epochs to produce a surface displacement map

    Use of automated change detection and VGI sources for identifying and validating urban land use change

    Get PDF
    © 2020, by the authors. Land use and land cover (LULC) mapping is often undertaken by national mapping agencies, where these LULC products are used for different types of monitoring and reporting applications. Updating of LULC databases is often done on a multi-year cycle due to the high costs involved, so changes are only detected when mapping exercises are repeated. Consequently, the information on LULC can quickly become outdated and hence may be incorrect in some areas. In the current era of big data and Earth observation, change detection algorithms can be used to identify changes in urban areas, which can then be used to automatically update LULC databases on a more continuous basis. However, the change detection algorithm must be validated before the changes can be committed to authoritative databases such as those produced by national mapping agencies. This paper outlines a change detection algorithm for identifying construction sites, which represent ongoing changes in LU, developed in the framework of the LandSense project. We then use volunteered geographic information (VGI) captured through the use of mapathons from a range of different groups of contributors to validate these changes. In total, 105 contributors were involved in the mapathons, producing a total of 2778 observations. The 105 contributors were grouped according to six different user-profiles and were analyzed to understand the impact of the experience of the users on the accuracy assessment. Overall, the results show that the change detection algorithm is able to identify changes in residential land use to an adequate level of accuracy (85%) but changes in infrastructure and industrial sites had lower accuracies (57% and 75 %, respectively), requiring further improvements. In terms of user profiles, the experts in LULC from local authorities, researchers in LULC at the French national mapping agency (IGN), and first-year students with a basic knowledge of geographic information systems had the highest overall accuracies (86.2%, 93.2%, and 85.2%, respectively). Differences in how the users approach the task also emerged, e.g., local authorities used knowledge and context to try to identify types of change while those with no knowledge of LULC (i.e., normal citizens) were quicker to choose 'Unknown' when the visual interpretation of a class was more difficult

    Evaluation of Azido 3-Deoxy- d - Manno-oct-2-ulosonic Acid (Kdo) Analogues for Click Chemistry-Mediated Metabolic Labeling of Myxococcus xanthus DZ2 Lipopolysaccharide

    Get PDF
    [Image: see text] Metabolic labeling paired with click chemistry is a powerful approach for selectively imaging the surfaces of diverse bacteria. Herein, we explored the feasibility of labeling the lipopolysaccharide (LPS) of Myxococcus xanthus—a Gram-negative predatory social bacterium known to display complex outer membrane (OM) dynamics—via growth in the presence of distinct azido (-N(3)) analogues of 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo). Determination of the LPS carbohydrate structure from strain DZ2 revealed the presence of one Kdo sugar in the core oligosaccharide, modified with phosphoethanolamine. The production of 8-azido-8-deoxy-Kdo (8-N(3)-Kdo) was then greatly improved over previous reports via optimization of the synthesis of its 5-azido-5-deoxy-d-arabinose precursor to yield gram amounts. The novel analogue 7-azido-7-deoxy-Kdo (7-N(3)-Kdo) was also synthesized, with both analogues capable of undergoing in vitro strain-promoted azide–alkyne cycloaddition (SPAAC) “click” chemistry reactions. Slower and faster growth of M. xanthus was displayed in the presence of 8-N(3)-Kdo and 7-N(3)-Kdo (respectively) compared to untreated cells, with differences also seen for single-cell gliding motility and type IV pilus-dependent swarm community expansion. While the surfaces of 8-N(3)-Kdo-grown cells were fluorescently labeled following treatment with dibenzocyclooctyne-linked fluorophores, the surfaces of 7-N(3)-Kdo-grown cells could not undergo fluorescent tagging. Activity analysis of the KdsB enzyme required to activate Kdo prior to its integration into nascent LPS molecules revealed that while 8-N(3)-Kdo is indeed a substrate of the enzyme, 7-N(3)-Kdo is not. Though a lack of M. xanthus cell aggregation was shown to expedite growth in liquid culture, 7-N(3)-Kdo-grown cells did not manifest differences in intrinsic clumping relative to untreated cells, suggesting that 7-N(3)-Kdo may instead be catabolized by the cells. Ultimately, these data provide important insights into the synthesis and cellular processing of valuable metabolic labels and establish a basis for the elucidation of fundamental principles of OM dynamism in live bacterial cells
    • 

    corecore