54 research outputs found
Bisphenol A exposure in Mexico City and risk of prematurity: a pilot nested case control study
Abstract Background Presence of Bisphenol A (BPA) has been documented worldwide in a variety of human biological samples. There is growing evidence that low level BPA exposure may impact placental tissue development and thyroid function in humans. The aim of this present pilot study was to determine urinary concentrations of BPA during the last trimester of pregnancy among a small subset of women in Mexico City, Mexico and relate these concentrations to risk of delivering prematurely. Methods A nested case-control subset of 60 participants in the Early Life Exposure in Mexico to ENvironmental Toxicants (ELEMENT) study in Mexico City, Mexico were selected based on delivering less than or equal to 37 weeks of gestation and greater than 37 weeks of gestation. Third trimester archived spot urine samples were analyzed by online solid phase extraction coupled with high performance liquid chromatography isotope dilution tandem mass spectrometry. Results BPA was detected in 80.0% (N = 48) of the urine samples; total concentrations ranged from < 0.4 μg/L to 6.7 μg/L; uncorrected geometric mean was 1.52 μg/L. The adjusted odds ratio of delivering less than or equal to 37 weeks in relation to specific gravity adjusted third trimester BPA concentration was 1.91 (95%CI 0.93, 3.91, p-value = 0.08). When cases were further restricted to births occurring prior to the 37th week (n = 12), the odds ratio for specific-gravity adjusted BPA was larger and statistically significant (p < 0.05). Conclusions This is the first study to document measurable levels of BPA in the urine of a population of Mexican women. This study also provides preliminary evidence, based on a single spot urine sample collected during the third trimester, that pregnant women who delivered less than or equal to 37 weeks of gestation and prematurely (< 37 weeks) had higher urinary concentrations of BPA compared to women delivering after 37 weeks.http://deepblue.lib.umich.edu/bitstream/2027.42/78251/1/1476-069X-9-62.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78251/2/1476-069X-9-62.pdfPeer Reviewe
Chemically Bonded Phases for the Analysis of Trace Amounts of Organic Pollutants
This work describes some results of identification and determination of bisphenol A (BPA) in powdered milk by applying the gas chromatography. To determine BPA contents in the milk and to reduce the matrix interference associated with the constituents of the powdered milk, we performed the following activities. First, we ultra-centrifuged the dissolved milk solutions. Next, we preconcentrated the analyte in the supernatant using a C18 and new sorbent with chemically bonded ketoimine group solid phase extraction column. Finally, we used gas chromatography for the determination of BPA in the samples under study. A recovery of bisphenol A from spiked milk samples was also performed, with recovery result located at 91% ± 3%/94% ± 2%
Biomonitoring of bisphenol A concentrations in maternal and umbilical cord blood in regard to birth outcomes and adipokine expression: a birth cohort study in Taiwan
<p>Abstract</p> <p>Background</p> <p>Bisphenol A (BPA) is a sealant and flux of plastic materials and has been determined to be an endocrine-disrupting chemical. Prenatal exposure to BPA can lead to substantial adverse effects on fetal growth and development. This study was conducted to assess BPA concentration in pregnant women and umbilical cord blood, and to investigate whether maternal BPA exposure affected fetal outcomes including lower birth weight (LBW), smaller size for gestational age (SGA), and high leptin (HLP) and low adiponectin (LAD) secretion.</p> <p>Methods</p> <p>We measured the BPA levels of maternal blood (n = 97) and umbilical cord blood (n = 97) with a high-performance liquid chromatography/UV detector. The protein secretion of leptin and adiponectin were separately determined using enzyme-linked immunosorbent assay. A logistic regression was performed to estimate the effects of maternal exposure to BPA on LBW, SGA, and adverse action of adipokines in newborns.</p> <p>Results</p> <p>The geometric means of BPA concentration in maternal blood and fetal cord blood were 2.5 ng/ml and 0.5 ng/ml, respectively. Elevated risks of LBW (OR 2.42, 95% confidence interval (CI) 1.72-3.36), SGA (OR 2.01, 95% CI 1.39-3.01), and adverse action of leptin (OR 1.67, 95% CI 1.12-2.25) and adiponectin (OR 1.25, 95% CI 1.52-3.97) were observed in male neonates in the highest quartile of maternal BPA exposure.</p> <p>Conclusions</p> <p>Elevated prenatal BPA exposure increased the risk of LBW, SGA, and adverse actions of adipokines in neonates, especially in male infants. These results provide further evidence that maternal exposure is correlated with adverse birth outcomes.</p
Combinations of physiologic estrogens with xenoestrogens alter calcium and kinase responses, prolactin release, and membrane estrogen receptor trafficking in rat pituitary cells
<p>Abstract</p> <p>Background</p> <p>Xenoestrogens such as alkylphenols and the structurally related plastic byproduct bisphenol A have recently been shown to act potently via nongenomic signaling pathways and the membrane version of estrogen receptor-α. Though the responses to these compounds are typically measured individually, they usually contaminate organisms that already have endogenous estrogens present. Therefore, we used quantitative medium-throughput screening assays to measure the effects of physiologic estrogens in combination with these xenoestrogens.</p> <p>Methods</p> <p>We studied the effects of low concentrations of endogenous estrogens (estradiol, estriol, and estrone) at 10 pM (representing pre-development levels), and 1 nM (representing higher cycle-dependent and pregnancy levels) in combinations with the same levels of xenoestrogens in GH<sub>3</sub>/B6/F10 pituitary cells. These levels of xenoestrogens represent extremely low contamination levels. We monitored calcium entry into cells using Fura-2 fluorescence imaging of single cells. Prolactin release was measured by radio-immunoassay. Extracellular-regulated kinase (1 and 2) phospho-activations and the levels of three estrogen receptors in the cell membrane (ERα, ERβ, and GPER) were measured using a quantitative plate immunoassay of fixed cells either permeabilized or nonpermeabilized (respectively).</p> <p>Results</p> <p>All xenoestrogens caused responses at these concentrations, and had disruptive effects on the actions of physiologic estrogens. Xenoestrogens reduced the % of cells that responded to estradiol via calcium channel opening. They also inhibited the activation (phosphorylation) of extracellular-regulated kinases at some concentrations. They either inhibited or enhanced rapid prolactin release, depending upon concentration. These latter two dose-responses were nonmonotonic, a characteristic of nongenomic estrogenic responses.</p> <p>Conclusions</p> <p>Responses mediated by endogenous estrogens representing different life stages are vulnerable to very low concentrations of these structurally related xenoestrogens. Because of their non-classical dose-responses, they must be studied in detail to pinpoint effective concentrations and the directions of response changes.</p
Effects of environmental Bisphenol A exposures on germ cell development and Leydig cell function in the human fetal testis
<div><p>Background</p><p>Using an organotypic culture system termed human Fetal Testis Assay (hFeTA) we previously showed that 0.01 μM BPA decreases basal, but not LH-stimulated, testosterone secreted by the first trimester human fetal testis. The present study was conducted to determine the potential for a long-term antiandrogenic effect of BPA using a xenograft model, and also to study the effect of BPA on germ cell development using both the hFETA and xenograft models.</p><p>Methods</p><p>Using the hFeTA system, first trimester testes were cultured for 3 days with 0.01 to 10 μM BPA. For xenografts, adult castrate male nude mice were injected with hCG and grafted with first trimester testes. Host mice received 10 μM BPA (~ 500 μg/kg/day) in their drinking water for 5 weeks. Plasma levels of total and unconjugated BPA were 0.10 μM and 0.038 μM respectively. Mice grafted with second trimester testes received 0.5 and 50 μg/kg/day BPA by oral gavage for 5 weeks.</p><p>Results</p><p>With first trimester human testes, using the hFeTA model, 10 μM BPA increased germ cell apoptosis. In xenografts, germ cell density was also reduced by BPA exposure. Importantly, BPA exposure significantly decreased the percentage of germ cells expressing the pluripotency marker AP-2γ, whilst the percentage of those expressing the pre-spermatogonial marker MAGE-A4 significantly increased. BPA exposure did not affect hCG-stimulated androgen production in first and second trimester xenografts as evaluated by both plasma testosterone level and seminal vesicle weight in host mice.</p><p>Conclusions</p><p>Exposure to BPA at environmentally relevant concentrations impairs germ cell development in first trimester human fetal testis, whilst gonadotrophin-stimulated testosterone production was unaffected in both first and second trimester testis. Studies using first trimester human fetal testis demonstrate the complementarity of the FeTA and xenograft models for determining the respective short-term and long term effects of environmental exposures.</p></div
Photodecomposition and Bioconcentration of a Bisphenol A Metabolite in Medaka, Oryzias latipes
Exposure experiments in medaka and photodecomposition tests were performed using a metabolite of bisphenol A [4-methyl-2,4-bis(p-hydroxyphenyl)-pent-1-ene; MBP], the solubility limit of which is 42 mg/l of water. Three adult medaka were kept in a 2 l glass beaker at 25 ± 1°C for 4 days. The LC50 for 96 hr was > 1000 ppb. The measured average MBP concentration in the breeding water (nominal concentration of 100 ppb) was 49.2 ppb. The average concentration in the whole bodies of medaka after 4 days was 1.92 mg/g-wet body, and the bioconcentration factor (BCF) of MBP was calculated to be 39.0. MBP in water and acetone was decomposed very easily, with about 98% of the MBP being decomposed after several hours under sunlight. MBP was also decomposed after 48 hr of illumination under a white fluorescent lamp
- …