1,392 research outputs found
Random matrix description of decaying quantum systems
This contribution describes a statistical model for decaying quantum systems
(e.g. photo-dissociation or -ionization). It takes the interference between
direct and indirect decay processes explicitely into account. The resulting
expressions for the partial decay amplitudes and the corresponding cross
sections may be considered a many-channel many-resonance generalization of
Fano's original work on resonance lineshapes [Phys. Rev 124, 1866 (1961)].
A statistical (random matrix) model is then introduced. It allows to describe
chaotic scattering systems with tunable couplings to the decay channels. We
focus on the autocorrelation function of the total (photo) cross section, and
we find that it depends on the same combination of parameters, as the
Fano-parameter distribution. These combinations are statistical variants of the
one-channel Fano parameter. It is thus possible to study Fano interference
(i.e. the interference between direct and indirect decay paths) on the basis of
the autocorrelation function, and thereby in the regime of overlapping
resonances. It allows us, to study the Fano interference in the limit of
strongly overlapping resonances, where we find a persisting effect on the level
of the weak localization correction.Comment: 16 pages, 2 figure
Scattering fidelity in elastodynamics
The recent introduction of the concept of scattering fidelity, causes us to
revisit the experiment by Lobkis and Weaver [Phys. Rev. Lett. 90, 254302
(2003)]. There, the ``distortion'' of the coda of an acoustic signal is
measured under temperature changes. This quantity is in fact the negative
logarithm of scattering fidelity. We re-analyse their experimental data for two
samples, and we find good agreement with random matrix predictions for the
standard fidelity. Usually, one may expect such an agreement for chaotic
systems only. While the first sample, may indeed be assumed chaotic, for the
second sample, a perfect cuboid, such an agreement is more surprising. For the
first sample, the random matrix analysis yields a perturbation strength
compatible with semiclassical predictions. For the cuboid the measured
perturbation strength is much larger than expected, but with the fitted values
for this strength, the experimental data are well reproduced.Comment: 4 page
The decay of photoexcited quantum systems: a description within the statistical scattering model
The decay of photoexcited quantum systems (examples are photodissociation of
molecules and autoionization of atoms) can be viewed as a half-collision
process (an incoming photon excites the system which subsequently decays by
dissociation or autoionization). For this reason, the standard statistical
approach to quantum scattering, originally developed to describe nuclear
compound reactions, is not directly applicable. Using an alternative approach,
correlations and fluctuations of observables characterizing this process were
first derived in [Fyodorov YV and Alhassid Y 1998 Phys. Rev. A 58, R3375]. Here
we show how the results cited above, and more recent results incorporating
direct decay processes, can be obtained from the standard statistical
scattering approach by introducing one additional channel.Comment: 7 pages, 2 figure
Fano interference and cross-section fluctuations in molecular photodissociation
We derive an expression for the total photodissociation cross section of a
molecule incorporating both indirect processes that proceed through excited
resonances, and direct processes. We show that this cross section exhibits
generalized Beutler-Fano line shapes in the limit of isolated resonances.
Assuming that the closed system can be modeled by random matrix theory, we
derive the statistical properties of the photodissociation cross section and
find that they are significantly affected by the direct processes. We identify
a unique signature of the direct processes in the cross-section distribution in
the limit of isolated resonances.Comment: 4 pages, 4 figure
Statistics of S-matrix poles for chaotic systems with broken time reversal invariance: a conjecture
In the framework of a random matrix description of chaotic quantum scattering
the positions of matrix poles are given by complex eigenvalues of an
effective non-Hermitian random-matrix Hamiltonian. We put forward a conjecture
on statistics of for systems with broken time-reversal invariance and
verify that it allows to reproduce statistical characteristics of Wigner time
delays known from independent calculations. We analyze the ensuing two-point
statistical measures as e.g. spectral form factor and the number variance. In
addition we find the density of complex eigenvalues of real asymmetric matrices
generalizing the recent result by Efetov\cite{Efnh}.Comment: 4 page
Signatures of the correlation hole in total and partial cross sections
In a complex scattering system with few open channels, say a quantum dot with
leads, the correlation properties of the poles of the scattering matrix are
most directly related to the internal dynamics of the system. We may ask how to
extract these properties from an analysis of cross sections. In general this is
very difficult, if we leave the domain of isolated resonances. We propose to
consider the cross correlation function of two different elastic or total cross
sections. For these we can show numerically and to some extent also
analytically a significant dependence on the correlations between the
scattering poles. The difference between uncorrelated and strongly correlated
poles is clearly visible, even for strongly overlapping resonances.Comment: 25 pages, 13 Postscript figures, typos corrected and references adde
Generalized Entanglement as a Natural Framework for Exploring Quantum Chaos
We demonstrate that generalized entanglement [Barnum {\em et al.}, Phys. Rev.
A {\bf 68}, 032308 (2003)] provides a natural and reliable indicator of quantum
chaotic behavior. Since generalized entanglement depends directly on a choice
of preferred observables, exploring how generalized entanglement increases
under dynamical evolution is possible without invoking an auxiliary coupled
system or decomposing the system into arbitrary subsystems. We find that, in
the chaotic regime, the long-time saturation value of generalized entanglement
agrees with random matrix theory predictions. For our system, we provide
physical intuition into generalized entanglement within a single system by
invoking the notion of extent of a state. The latter, in turn, is related to
other signatures of quantum chaos.Comment: clarified and expanded version accepted by Europhys. Let
Resonance trapping and saturation of decay widths
Resonance trapping appears in open many-particle quantum systems at high
level density when the coupling to the continuum of decay channels reaches a
critical strength. Here a reorganization of the system takes place and a
separation of different time scales appears. We investigate it under the
influence of additional weakly coupled channels as well as by taking into
account the real part of the coupling term between system and continuum. We
observe a saturation of the mean width of the trapped states. Also the decay
rates saturate as a function of the coupling strength. The mechanism of the
saturation is studied in detail. In any case, the critical region of
reorganization is enlarged. When the transmission coefficients for the
different channels are different, the width distribution is broadened as
compared to a chi_K^2 distribution where K is the number of channels. Resonance
trapping takes place before the broad state overlaps regions beyond the
extension of the spectrum of the closed system.Comment: 18 pages, 8 figures, accepted by Phys. Rev.
Classical wave experiments on chaotic scattering
We review recent research on the transport properties of classical waves
through chaotic systems with special emphasis on microwaves and sound waves.
Inasmuch as these experiments use antennas or transducers to couple waves into
or out of the systems, scattering theory has to be applied for a quantitative
interpretation of the measurements. Most experiments concentrate on tests of
predictions from random matrix theory and the random plane wave approximation.
In all studied examples a quantitative agreement between experiment and theory
is achieved. To this end it is necessary, however, to take absorption and
imperfect coupling into account, concepts that were ignored in most previous
theoretical investigations. Classical phase space signatures of scattering are
being examined in a small number of experiments.Comment: 33 pages, 13 figures; invited review for the Special Issue of J.
Phys. A: Math. Gen. on "Trends in Quantum Chaotic Scattering
Random Matrices close to Hermitian or unitary: overview of methods and results
The paper discusses progress in understanding statistical properties of
complex eigenvalues (and corresponding eigenvectors) of weakly non-unitary and
non-Hermitian random matrices. Ensembles of this type emerge in various
physical contexts, most importantly in random matrix description of quantum
chaotic scattering as well as in the context of QCD-inspired random matrix
models.Comment: Published version, with a few more misprints correcte
- …
