9,578 research outputs found

    Strong decays of heavy baryons in Bethe-Salpeter formalism

    Full text link
    In this paper we study the properties of diquarks (composed of uu and/or dd quarks) in the Bethe-Salpeter formalism under the covariant instantaneous approximation. We calculate their BS wave functions and study their effective interaction with the pion. Using the effective coupling constant among the diquarks and the pion, in the heavy quark limit mQ→∞m_Q\to\infty, we calculate the decay widths of ΣQ(∗)\Sigma_Q^{(*)} (Q=c,bQ=c,b) in the BS formalism under the covariant instantaneous approximation and then give predictions of the decay widths Γ(Σb(∗)→Λb+π)\Gamma(\Sigma_b^{(*)}\to\Lambda_b+\pi).Comment: 41 pages, 1 figure, LaTex2e, typos correcte

    Antisense-based therapy for the treatment of spinal muscular atrophy

    Get PDF
    One of the greatest thrills a biomedical researcher may experience is seeing the product of many years of dedicated effort finally make its way to the patient. As a team, we have worked for the past eight years to discover a drug that could treat a devastating childhood neuromuscular disease, spinal muscular atrophy (SMA). Here, we describe the journey that has led to a promising drug based on the biology underlying the disease

    A possible disk mechanism for the 23d QPO in Mkn~501

    Full text link
    Optically thin two-temperature accretion flows may be thermally and viscously stable, but acoustically unstable. Here we propose that the O-mode instability of a cooling-dominated optically thin two-temperature inner disk may explain the 23-day quasi-periodic oscillation (QPO) period observed in the TeV and X-ray light curves of Mkn~501 during its 1997 high state. In our model the relativistic jet electrons Compton upscatter the disk soft X-ray photons to TeV energies, so that the instability-driven X-ray periodicity will lead to a corresponding quasi-periodicity in the TeV light curve and produce correlated variability. We analyse the dependence of the instability-driven quasi-periodicity on the mass (M) of the central black hole, the accretion rate (M˙\rm{\dot{M}}) and the viscous parameter (α\alpha) of the inner disk. We show that in the case of Mkn~501 the first two parameters are constrained by various observational results, so that for the instability occurring within a two-temperature disk where α=0.05−1.0\alpha=0.05-1.0, the quasi-period is expected to lie within the range of 8 to 100 days, as indeed the case. In particular, for the observed 23-day QPO period our model implies a viscosity coefficient α≤0.28\alpha \leq 0.28, a sub-Eddington accretion rate M˙≃0.02M˙Edd\dot{M} \simeq 0.02 \dot{M}_{\rm Edd} and a transition radius to the outer standard disk of r0∼60rgr_0 \sim 60 r_g, and predicts a period variation δP/P∼0.23\delta P/P \sim 0.23 due to the motion of the instability region.Comment: 18 pages, 1 figure, accepted by AP
    • …
    corecore