248 research outputs found
Immuno-surgical management of pancreatic cancer with analysis of cancer exosomes
Exosomes (EXs), a type of extracellular vesicles secreted from various cells and especially cancer cells, mesenchymal cells, macrophages and other cells in the tumor microenvironment (TME), are involved in biologically malignant behaviors of cancers. Recent studies have revealed that EXs contain microRNAs on their inside and express proteins and glycolipids on their outsides, every component of which plays a role in the transmission of genetic and/or epigenetic information in cell-to-cell communications. It is also known that miRNAs are involved in the signal transduction. Thus, EXs may be useful for monitoring the TME of tumor tissues and the invasion and metastasis, processes that are associated with patient survival. Because several solid tumors secrete immune checkpoint proteins, including programmed cell death-ligand 1, the EX-mediated mechanisms are suggested to be potent targets for monitoring patients. Therefore, a companion therapeutic approach against cancer metastasis to distant organs is proposed when surgical removal of the primary tumor is performed. However, EXs and immune checkpoint mechanisms in pancreatic cancer are not fully understood, we provide an update on the recent advances in this field and evidence that EXs will be useful for maximizing patient benefit in precision medicine
Measurement of radon concentrations at Super-Kamiokande
Radioactivity from radon is a major background for observing solar neutrinos
at Super-Kamiokande. In this paper, we describe the measurement of radon
concentrations at Super-Kamiokande, the method of radon reduction, and the
radon monitoring system. The measurement shows that the current low-energy
event rate between 5.0 MeV and 6.5 MeV implies a radon concentration in the
Super-Kamiokande water of less than 1.4 mBq/m.Comment: 11 pages, 4 figure
Observation of the east-west anisotropy of the atmospheric neutrino flux
The east-west anisotropy, caused by the deflection of primary cosmic rays in
the Earth's magnetic field, is observed for the first time in the flux of
atmospheric neutrinos. Using a 45 kt-year exposure of the
Super-Kamiokande detector, 552 e-like and 633 mu-like horizontally-going
events are selected in the momentum range between 400 and 3000 MeV/c.
The azimuthal distribution of e-like and mu-like events agrees with the
expectation from atmospheric neutrino flux calculations that account for the
geomagnetic field, verifying that the geomagnetic field effects in the
production of atmospheric neutrinos in the GeV energy range are well
understood.Comment: 8 pages,3 figures revtex, submitted to PR
Measurement of a small atmospheric ratio
From an exposure of 25.5~kiloton-years of the Super-Kamiokande detector, 900
muon-like and 983 electron-like single-ring atmospheric neutrino interactions
were detected with momentum MeV/, MeV/, and
with visible energy less than 1.33 GeV. Using a detailed Monte Carlo
simulation, the ratio was measured to be , consistent with previous results from the
Kamiokande, IMB and Soudan-2 experiments, and smaller than expected from
theoretical models of atmospheric neutrino production.Comment: 14 pages with 5 figure
Calibration of Super-Kamiokande Using an Electron Linac
In order to calibrate the Super-Kamiokande experiment for solar neutrino
measurements, a linear accelerator (LINAC) for electrons was installed at the
detector. LINAC data were taken at various positions in the detector volume,
tracking the detector response in the variables relevant to solar neutrino
analysis. In particular, the absolute energy scale is now known with less than
1 percent uncertainty.Comment: 24 pages, 16 figures, Submitted to NIM
- âŠ