222 research outputs found

    Changes in elastin, elastin binding protein and versican in alveoli in chronic obstructive pulmonary disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>COPD is characterised by loss of alveolar elastic fibers and by lack of effective repair. Elastic fibers are assembled at cell surfaces by elastin binding protein (EBP), a molecular chaperone whose function can be reversibility inhibited by chondroitin sulphate of matrix proteoglycans such as versican. This study aimed to determine if alveoli of patients with mild to moderate COPD contained increased amounts of versican and a corresponding decrease in EBP, and if these changes were correlated with decreases in elastin and FEV<sub>1</sub>.</p> <p>Methods</p> <p>Lung samples were obtained from 26 control (FEV<sub>1 </sub>≥ 80% predicted, FEV<sub>1</sub>/VC >0.7) and 17 COPD patients (FEV<sub>1 </sub>≥ 40% – <80% predicted, FEV<sub>1</sub>/VC ≤ 0.7) who had undergone a lobectomy for bronchial carcinoma. Samples were processed for histological and immuno-staining. Volume fractions (<it>V</it><sub>v</sub>) of elastin in alveolar walls and alveolar rims were determined by point counting, and versican and EBP assessed by grading of staining intensities.</p> <p>Results</p> <p>Elastin <it>V</it>v was positively correlated with FEV<sub>1 </sub>for both the alveolar walls (r = 0.66, p < 0.001) and rims (r = 0.41, p < 0.01). Versican was negatively correlated with FEV<sub>1 </sub>in both regions (r = 0.30 and 0.32 respectively, p < 0.05), with the highest staining intensities found in patients with the lowest values for FEV<sub>1</sub>. Conversely, staining intensities for EBP in alveolar walls and rims and were positively correlated with FEV<sub>1 </sub>(r = 0.43 and 0.46, p < 0.01).</p> <p>Conclusion</p> <p>Patients with mild to moderate COPD show progressively increased immuno-staining for versican and correspondingly decreased immuno-staining for EBP, with decreasing values of FEV<sub>1</sub>. These findings may explain the lack of repair of elastic fibers in the lungs of patients with moderate COPD. Removal of versican may offer a strategy for effective repair.</p

    The effect of low-level laser irradiation (In-Ga-Al-AsP - 660 nm) on melanoma in vitro and in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been speculated that the biostimulatory effect of Low Level Laser Therapy could cause undesirable enhancement of tumor growth in neoplastic diseases. The aim of the present study is to analyze the behavior of melanoma cells (B16F10) <it>in vitro </it>and the <it>in vivo </it>development of melanoma in mice after laser irradiation.</p> <p>Methods</p> <p>We performed a controlled <it>in vitro </it>study on B16F10 melanoma cells to investigate cell viability and cell cycle changes by the Tripan Blue, MTT and cell quest histogram tests at 24, 48 and 72 h post irradiation. The <it>in vivo </it>mouse model (male Balb C, n = 21) of melanoma was used to analyze tumor volume and histological characteristics. Laser irradiation was performed three times (once a day for three consecutive days) with a 660 nm 50 mW CW laser, beam spot size 2 mm<sup>2</sup>, irradiance 2.5 W/cm<sup>2 </sup>and irradiation times of 60s (dose 150 J/cm<sup>2</sup>) and 420s (dose 1050 J/cm<sup>2</sup>) respectively.</p> <p>Results</p> <p>There were no statistically significant differences between the <it>in vitro </it>groups, except for an increase in the hypodiploid melanoma cells (8.48 ± 1.40% and 4.26 ± 0.60%) at 72 h post-irradiation. This cancer-protective effect was not reproduced in the <it>in vivo </it>experiment where outcome measures for the 150 J/cm<sup>2 </sup>dose group were not significantly different from controls. For the 1050 J/cm<sup>2 </sup>dose group, there were significant increases in tumor volume, blood vessels and cell abnormalities compared to the other groups.</p> <p>Conclusion</p> <p>LLLT Irradiation should be avoided over melanomas as the combination of high irradiance (2.5 W/cm<sup>2</sup>) and high dose (1050 J/cm<sup>2</sup>) significantly increases melanoma tumor growth <it>in vivo</it>.</p

    Removal of power-line interference from the ECG: a review of the subtraction procedure

    Get PDF
    BACKGROUND: Modern biomedical amplifiers have a very high common mode rejection ratio. Nevertheless, recordings are often contaminated by residual power-line interference. Traditional analogue and digital filters are known to suppress ECG components near to the power-line frequency. Different types of digital notch filters are widely used despite their inherent contradiction: tolerable signal distortion needs a narrow frequency band, which leads to ineffective filtering in cases of larger frequency deviation of the interference. Adaptive filtering introduces unacceptable transient response time, especially after steep and large QRS complexes. Other available techniques such as Fourier transform do not work in real time. The subtraction procedure is found to cope better with this problem. METHOD: The subtraction procedure was developed some two decades ago, and almost totally eliminates power-line interference from the ECG signal. This procedure does not affect the signal frequency components around the interfering frequency. Digital filtering is applied on linear segments of the signal to remove the interference components. These interference components are stored and further subtracted from the signal wherever non-linear segments are encountered. RESULTS: Modifications of the subtraction procedure have been used in thousands of ECG instruments and computer-aided systems. Other work has extended this procedure to almost all possible cases of sampling rate and interference frequency variation. Improved structure of the on-line procedure has worked successfully regardless of the multiplicity between the sampling rate and the interference frequency. Such flexibility is due to the use of specific filter modules. CONCLUSION: The subtraction procedure has largely proved advantageous over other methods for power-line interference cancellation in ECG signals

    Frequent downregulation of 14-3-3 σ protein and hypermethylation of 14-3-3 σ gene in salivary gland adenoid cystic carcinoma

    Get PDF
    14-3-3 σ, a target gene of the p53 tumour suppressor protein, has been shown to regulate the cell cycle at the G2/M checkpoint. Recent studies have demonstrated that 14-3-3 σ is downregulated by hypermethylation of the CpG island in several types of cancer. In this study, we investigated the expression and methylation status of 14-3-3 σ in human salivary gland adenoid cystic carcinoma (ACC) and mucoepidermoid carcinoma (MEC). Immunohistochemical analysis revealed that the positive expression rate of 14-3-3 σ in ACC (one out of 14) was markedly lower than that in MEC (ten out of 10). Since most of the ACCs carried the wild-type p53 protein, downregulation of 14-3-3 σ in ACC may not be due to the dysfunction of p53 pathway. Microdissection–methylation-specific PCR revealed that frequent hypermethylation of the 14-3-3 σ gene was observed in ACC when compared to that in MEC. In cultured-ACC cells, we confirmed the downregulation of 14-3-3 σ via hemimethylation of the gene by sequencing analysis after sodium bisulphite treatment. Furthermore, re-expression of 14-3-3 σ in the ACC cells was induced by the treatment with DNA demethylating agent, 5-aza-2′-deoxycytidine. Irradiation apparently induced the enhanced expression of 14-3-3 σ and G2/M arrest in normal salivary gland cells; however, in the ACC cells, neither induction of 14-3-3 σ nor G2/M arrest was induced by irradiation. These results suggest that downregulation of 14-3-3 σ might play critical roles in the neoplastic development and radiosensitivity of ACC

    Chronic Delivery of Antibody Fragments Using Immunoisolated Cell Implants as a Passive Vaccination Tool

    Get PDF
    BACKGROUND: Monoclonal antibodies and antibody fragments are powerful biotherapeutics for various debilitating diseases. However, high production costs, functional limitations such as inadequate pharmacokinetics and tissue accessibility are the current principal disadvantages for broadening their use in clinic. METHODOLOGY AND PRINCIPAL FINDINGS: We report a novel method for the long-term delivery of antibody fragments. We designed an allogenous immunoisolated implant consisting of polymer encapsulated myoblasts engineered to chronically release scFv antibodies targeted against the N-terminus of the Aβ peptide. Following a 6-month intracerebral therapy we observed a significant reduction of the production and aggregation of the Aβ peptide in the APP23 transgenic mouse model of Alzheimer's disease. In addition, functional assessment showed prevention of behavioral deficits related to anxiety and memory traits. CONCLUSIONS AND SIGNIFICANCE: The chronic local release of antibodies using immunoisolated polymer cell implants represents an alternative passive vaccination strategy in Alzheimer's disease. This novel technique could potentially benefit other diseases presently treated by local and systemic antibody administration

    Interplay between phosphorylation and palmitoylation mediates plasma membrane targeting and sorting of GAP43.

    Get PDF
    Phosphorylation and lipidation provide posttranslational mechanisms that contribute to the distribution of cytosolic proteins in growing nerve cells. The growth-associated protein GAP43 is susceptible to both phosphorylation and S-palmitoylation and is enriched in the tips of extending neurites. However, how phosphorylation and lipidation interplay to mediate sorting of GAP43 is unclear. Using a combination of biochemical, genetic, and imaging approaches, we show that palmitoylation is required for membrane association and that phosphorylation at Ser-41 directs palmitoylated GAP43 to the plasma membrane. Plasma membrane association decreased the diffusion constant fourfold in neuritic shafts. Sorting to the neuritic tip required palmitoylation and active transport and was increased by phosphorylation-mediated plasma membrane interaction. Vesicle tracking revealed transient association of a fraction of GAP43 with exocytic vesicles and motion at a fast axonal transport rate. Simulations confirmed that a combination of diffusion, dynamic plasma membrane interaction and active transport of a small fraction of GAP43 suffices for efficient sorting to growth cones. Our data demonstrate a complex interplay between phosphorylation and lipidation in mediating the localization of GAP43 in neuronal cells. Palmitoylation tags GAP43 for global sorting by piggybacking on exocytic vesicles, whereas phosphorylation locally regulates protein mobility and plasma membrane targeting of palmitoylated GAP43
    corecore