31,882 research outputs found
New strong sector, odd-parity processes, and the Tevatron
The color-octet isosinglet "rho" of a new strong-interaction sector is
readily produced in ppbar collisions. Its odd-parity decay to an "eta" and a
gluon may exceed its decay rate to dijets. At center of mass energies
sufficiently greater than the colored "rho" mass, the odd-parity production of
("omega" + colored "eta") or ("rho" + colored "pion") may be comparable to
ttbar production. Considering that the "omega" has a dominant odd-parity decay
mode, we end up with (Z, W, or gamma) + 4 jet events with two of the jets
containing b or bbar.Comment: 8 pages, uuencoded PS file, try ghostscript or direct printing rather
than ghostview, PS file of paper without figure is available on WWW at
http://bigmac2.physics.utoronto.ca/BHpapers.htm
Physico-electrochemical Characterization of Pluripotent Stem Cells during Self-Renewal or Differentiation by a Multi-modal Monitoring System.
Monitoring pluripotent stem cell behaviors (self-renewal and differentiation to specific lineages/phenotypes) is critical for a fundamental understanding of stem cell biology and their translational applications. In this study, a multi-modal stem cell monitoring system was developed to quantitatively characterize physico-electrochemical changes of the cells in real time, in relation to cellular activities during self-renewal or lineage-specific differentiation, in a non-destructive, label-free manner. The system was validated by measuring physical (mass) and electrochemical (impedance) changes in human induced pluripotent stem cells undergoing self-renewal, or subjected to mesendodermal or ectodermal differentiation, and correlating them to morphological (size, shape) and biochemical changes (gene/protein expression). An equivalent circuit model was used to further dissect the electrochemical (resistive and capacitive) contributions of distinctive cellular features. Overall, the combination of the physico-electrochemical measurements and electrical circuit modeling collectively offers a means to longitudinally quantify the states of stem cell self-renewal and differentiation
Kinematics of disk galaxies in (proto-)clusters at z=1.5
We observed star-forming galaxies at z~1.5 selected from the HyperSuprimeCam
Subaru Strategic Program. The galaxies are part of two significant
overdensities of [OII] emitters identified via narrow-band imaging and
photometric redshifts from grizy photometry. We used VLT/KMOS to carry out
Halpha integral field spectroscopy of 46 galaxies in total. Ionized gas maps,
star formation rates and velocity fields were derived from the Halpha emission
line. We quantified morphological and kinematical asymmetries to test for
potential gravitational (e.g. galaxy-galaxy) or hydrodynamical (e.g.
ram-pressure) interactions. Halpha emission was detected in 36 targets. 34 of
the galaxies are members of two (proto-)clusters at z=1.47, confirming our
selection strategy to be highly efficient. By fitting model velocity fields to
the observed ones, we determined the intrinsic maximum rotation velocity Vmax
of 14 galaxies. Utilizing the luminosity-velocity (Tully-Fisher) relation, we
find that these galaxies are more luminous than their local counterparts of
similar mass by up to ~4 mag in the rest-frame B-band. In contrast to field
galaxies at z<1, the offsets of the z~1.5 (proto-)cluster galaxies from the
local Tully-Fisher relation are not correlated with their star formation rates
but with the ratio between Vmax and gas velocity dispersion sigma_g. This
probably reflects that, as is observed in the field at similar redshifts, fewer
disks have settled to purely rotational kinematics and high Vmax/sigma_g
ratios. Due to relatively low galaxy velocity dispersions (sigma_v < 400 km/s)
of the (proto-)clusters, gravitational interactions likely are more efficient,
resulting in higher kinematical asymmetries, than in present-day clusters.
(abbr.)Comment: Accepted for publication in A&A. 11 pages, 8 figures, 1 tabl
On the properties of fractal cloud complexes
We study the physical properties derived from interstellar cloud complexes
having a fractal structure. We first generate fractal clouds with a given
fractal dimension and associate each clump with a maximum in the resulting
density field. Then, we discuss the effect that different criteria for clump
selection has on the derived global properties. We calculate the masses, sizes
and average densities of the clumps as a function of the fractal dimension
(D_f) and the fraction of the total mass in the form of clumps (epsilon). In
general, clump mass does not fulfill a simple power law with size of the type
M_cl ~ (R_cl)**(gamma), instead the power changes, from gamma ~ 3 at small
sizes to gamma<3 at larger sizes. The number of clumps per logarithmic mass
interval can be fitted to a power law N_cl ~ (M_cl)**(-alpha_M) in the range of
relatively large masses, and the corresponding size distribution is N_cl ~
(R_cl)**(-alpha_R) at large sizes. When all the mass is forming clumps
(epsilon=1) we obtain that as D_f increases from 2 to 3 alpha_M increases from
~0.3 to ~0.6 and alpha_R increases from ~1.0 to ~2.1. Comparison with
observations suggests that D_f ~ 2.6 is roughly consistent with the average
properties of the ISM. On the other hand, as the fraction of mass in clumps
decreases (epsilon<1) alpha_M increases and alpha_R decreases. When only ~10%
of the complex mass is in the form of dense clumps we obtain alpha_M ~ 1.2 for
D_f=2.6 (not very different from the Salpeter value 1.35), suggesting this a
likely link between the stellar initial mass function and the internal
structure of molecular cloud complexes.Comment: 32 pages, 13 figures, 1 table. Accepted for publication in Ap
Localized starbursts in dwarf galaxies produced by impact of low metallicity cosmic gas clouds
Models of galaxy formation predict that gas accretion from the cosmic web is
a primary driver of star formation over cosmic history. Except in very dense
environments where galaxy mergers are also important, model galaxies feed from
cold streams of gas from the web that penetrate their dark matter haloes.
Although these predictions are unambiguous, the observational support has been
indirect so far. Here we report spectroscopic evidence for this process in
extremely metal-poor galaxies (XMPs) of the local Universe, taking the form of
localized starbursts associated with gas having low metallicity. Detailed
abundance analyses based on Gran Telescopio Canarias (GTC) optical spectra of
ten XMPs show that the galaxy hosts have metallicities around 60 % solar on
average, while the large star-forming regions that dominate their integrated
light have low metallicities of some 6 % solar. Because gas mixes azimuthally
in a rotation timescale (a few hundred Myr), the observed metallicity
inhomogeneities are only possible if the metal-poor gas fell onto the disk
recently. We analyze several possibilities for the origin of the metal-poor
gas, favoring the metal-poor gas infall predicted by numerical models. If this
interpretation is correct, XMPs trace the cosmic web gas in their surroundings,
making them probes to examine its properties.Comment: Accepted for publication in ApJ
Eye fixations to figures in a four-choice situation with luminance balanced areas: Evaluating practice effects
Contingency analyses of eye movements may reveal variables that are relevant to the stimulus control of observing behavior. The present research tracked the eye movements of four adults exposed to a simultaneous discrimination among four stimuli, two two-dimensional (square and circle) and two three-dimensional (cube and cylinder) mono-chromatic figures with approximately equal luminance. On each discrimination trial, the stimuli were displayed in the four corners of a video monitor and participants chose among them by pressing corresponding keys. For two participants, choosing either cube or square (S+) was followed by the word âcorrectâ and a 3-second inter-trial interval. Alternatively, choosing either cylinder or circle (S-) was followed by "incorrect" and a 30-second inter-trial interval. For the other two participants, contingencies were reversed. The position of the stimuli on the screen varied randomly across trials. The procedure continued for 80 trials. During these trials, discriminated choices were established. Despite the presence of both a two- and a three-dimensional S+ on each trial, responses to the three-dimensional S+ tended to prevail. Although general eye fixations tended to decrease as discrimination was established, subjects tended to observe S+ for longer durations than S-. Characteristics of the stimuli may interact with the contingencies of reinforcement in the stimulus control of observing behavior
Compensation of B-L charge of matter with relic sneutrinos
We consider massless gauge boson connected to B-L charge with and without
compensation to complete the investigation of the gauging of B and L charges.
Relic sneutrinos predicted by SUSY and composite models may compensate B-L
charge of matter. As a consequence of the possible compensation mechanism we
have shown that the available experimental data admit the range of the B-L
interaction constant, 10^{-29} < {\alpha}_{B-L} < 10^{-12}, in addition to
{\alpha}_{B-L} < 10^{-49} obtained without compensation.Comment: 6 page
The Low Redshift survey at Calar Alto (LoRCA)
The Baryon Acoustic Oscillation (BAO) feature in the power spectrum of
galaxies provides a standard ruler to measure the accelerated expansion of the
Universe. To extract all available information about dark energy, it is
necessary to measure a standard ruler in the local, z<0.2, universe where dark
energy dominates most the energy density of the Universe. Though the volume
available in the local universe is limited, it is just big enough to measure
accurately the long 100 Mpc/h wave-mode of the BAO. Using cosmological N-body
simulations and approximate methods based on Lagrangian perturbation theory, we
construct a suite of a thousand light-cones to evaluate the precision at which
one can measure the BAO standard ruler in the local universe. We find that
using the most massive galaxies on the full sky (34,000 sq. deg.), i.e. a
K(2MASS)<14 magnitude-limited sample, one can measure the BAO scale up to a
precision of 4\% and 1.2\% using reconstruction). We also find that such a
survey would help to detect the dynamics of dark energy.Therefore, we propose a
3-year long observational project, named the Low Redshift survey at Calar Alto
(LoRCA), to observe spectroscopically about 200,000 galaxies in the northern
sky to contribute to the construction of aforementioned galaxy sample. The
suite of light-cones is made available to the public.Comment: 15 pages. Accepted in MNRAS. Please visit our website:
http://lorca-survey.ft.uam.es
New Solution for Neutrino Masses and Leptogenesis in Adjoint SU(5)
We investigate baryogenesis via leptogenesis and generation of neutrino
masses and mixings through the Type I plus Type III seesaw plus an one-loop
mechanism in the context of Renormalizable Adjoint SU(5) theory. One light
neutrino remains massless, because the contributions of three heavy Majorana
fermions \rho_0, \rho_3 and \rho_8 to the neutrino mass matrix are not linearly
independent. However none of these heavy fermions is decoupled from the
generation of neutrino masses. This opens a new range in parameter space for
successful leptogenesis, in particular, allows for inverted hierarchy of the
neutrino masses.Comment: 16 pages, 4 figures; references added and typos fixe
Supernova type Ia luminosities, their dependence on second parameters, and the value of H_0
A sample of 35 SNe Ia with good to excellent photometry in B and V, minimum
internal absorption, and 1200 < v < \approx 30000 km/s is compiled from the
literature. As far as their spectra are known they are all Branch-normal. For
29 of the SNe Ia also peak magnitudes in I are known. The SNe Ia have uniform
colors at maximum, i.e. =-0.012 mag (sigma=0.051) and =-0.276 mag
(sigma=0.078). In the Hubble diagram they define a Hubble line with a scatter
of =0.21-0.16 mag, decreasing with wavelength. The scatter is further
reduced if the SNe Ia are corrected for differences in decline rate Delta_m_15
or color (B-V). A combined correction reduces the scatter to sigma<=0.13 mag.
After the correction no significant dependence remains on Hubble type or
galactocentric distance. The Hubble line suggests some curvature which can be
differently interpreted. A consistent solution is obtained for a cosmological
model with Omega_M=0.3, Omega_Lambda=0.7, which is indicated also by much more
distant SNe Ia. Absolute magnitudes are available for eight equally blue
(Branch-normal) SNe Ia in spirals, whose Cepheid distances are known. If their
well defined mean values of M_B, M_V, and M_I are used to fit the Hubble line
to the above sample of SNe Ia one obtains H_0=58.3 km/s/Mpc, or, after
adjusting all SNe Ia to the average values of Delta_m_15 and (B-V), H_0=60.9
km/s/Mpc. Various systematic errors are discussed whose elimination tends to
decrease H_0. The finally adopted value at the 90-percent level, including
random and systematic errors, is H_0=58.5 +/- 6.3 km/s/Mpc. Several higher
values of H_0 from SNe Ia, as suggested in the literature, are found to depend
on large corrections for variations of the light curve parameter and/or on an
unwarranted reduction of the Cepheid distances of the calibrating SNe Ia.Comment: 42 pages, including 9 figures; submitted to Ap
- âŠ