1,295 research outputs found

    Bilayer two-orbital model of La3_3Ni2_2O7_7 under pressure

    Full text link
    The newly discovered Ruddlesden-Popper bilayer La3_3Ni2_2O7_7 reaches an remarkable superconducting transition temperature TcT_c = 80 K under a pressure of above 14 GPa. Here we propose a minimal bilayer two-orbital model of the high-pressure phase of La3_3Ni2_2O7_7. Our model is constructed with the Ni-3dx2y2_{x^2-y^2}, 3d3z2r2_{3z^2-r^2} orbitals by using Wannier downfolding of the density functional theory calculations, which captures the key ingredients of the material, such as band structure and Fermi surface topology. There are two electron pockets α\alpha, β\beta and one hole pocket γ\gamma on the Fermi surface, in which the α\alpha, β\beta pockets show mixing of two orbitals, while the γ\gamma pocket is associated with Ni-d3z2r2_{3z^2-r^2} orbital. The RPA spin susceptibility reveals a magnetic enhancement associating to the d3z2r2_{3z^2-r^2} state. A higher energy model with O-p orbitals is also provided for further study

    Structural transition, electric transport, and electronic structures in the compressed trilayer nickelate La4Ni3O10

    Full text link
    Atomic structure and electronic band structure are fundamental properties for understanding the mechanism of superconductivity. Motivated by the discovery of pressure-induced high-temperature superconductivity at 80 K in the bilayer Ruddlesden-Popper nickelate La3Ni2O7, the atomic structure and electronic band structure of the trilayer nickelate La4Ni3O10 under pressure up to 44.3 GPa are investigated. A structural transition from the monoclinic P21/a space group to the tetragonal I4/mmm around 12.6-13.4 GPa is identified, accompanying with a drop of resistance below 7 K. Density functional theory calculations suggest that the bonding state of Ni 3dz2 orbital rises and crosses the Fermi level at high pressures, which may give rise to possible superconductivity observed in resistance under pressure in La4Ni3O10. The trilayer nickelate La4Ni3O10 shows some similarities with the bilayer La3Ni2O7 and has unique properties, providing a new platform to investigate the underlying mechanism of superconductivity in nickelates.Comment: 19 pages, 4 figure

    Single crystal growth and superconductivity in RbNi2_2Se2_2

    Get PDF
    We report the synthesis and characterization of RbNi2_2Se2_2, an analog of the iron chalcogenide superconductor Rbx_xFe2_2Se2_2, via transport, angle resolved photoemission spectroscopy, and density functional theory calculations. A superconducting transition at TcT_{c} = 1.20 K is identified. In normal state, RbNi2_2Se2_2 shows paramagnetic and Fermi liquid behaviors. A large Sommerfeld coefficient yields a heavy effective electron mass of m6mem^{*}\approx6m_{e}. In the superconducting state, zero-field electronic specific-heat data CesC_{es} can be described by a two-gap BCS model, indicating that RbNi2_2Se2_2 is a multi-gap superconductor. Our density functional theory calculations and angle resolved photoemission spectroscopy measurements demonstrate that RbNi2_2Se2_2 exhibits relatively weak correlations and multi-band characteristics, consistent with the multi-gap superconductivity.Comment: 7 pages, 4 figure

    Novel and Recurrent Mutations of WISP3 in Two Chinese Families with Progressive Pseudorheumatoid Dysplasia

    Get PDF
    BACKGROUND: The WNT1-inducible signaling pathway protein 3 (WISP3), which belongs to the CCN (cysteine-rich protein 61, connective tissue growth factor, nephroblastoma overexpressed) family, is a secreted cysteine-rich matricellular protein that is involved in chondrogenesis, osteogenesis and tumorigenesis. WISP3 gene mutations are associated with progressive pseudorheumatoid dysplasia (PPD, OMIM208230), an autosomal recessive genetic disease that is characterized by the swelling of multiple joints and disproportionate dwarfism. METHODOLOGY/PRINCIPAL FINDINGS: Four PPD patients from two unrelated Chinese families were recruited for this study. The clinical diagnosis was confirmed by medical history, physical examinations, laboratory results and radiological abnormalities. WISP3 mutations were detected by direct DNA sequence analysis. In total, four different mutations were identified, which consisted of two missense mutations, one deletion and one insertion that spanned exons 3, 5 and 6 of the WISP3 gene. One of the missense mutations (c.342T>G/p.C114W) and a seven-base pair frameshift deletion (c.716_722del/p.E239fs*16) were novel. The other missense mutation (c.1000T>C/p. S334P) and the insertion mutation (c.866_867insA/p.Q289fs*31) had previously been identified in Chinese patients. All four cases had a compound heterozygous status, and their parents were heterozygous carriers of these mutations. CONCLUSIONS/SIGNIFICANCE: The results of our study expand the spectrum of WISP3 mutations that are associated with PPD and further elucidate the function of WISP3

    Orbital-Dependent Electron Correlation in Double-Layer Nickelate La3Ni2O7

    Full text link
    The latest discovery of high temperature superconductivity near 80K in La3Ni2O7 under high pressure has attracted much attention. Many proposals are put forth to understand the origin of superconductivity. The determination of electronic structures is a prerequisite to establish theories to understand superconductivity in nickelates but is still lacking. Here we report our direct measurement of the electronic structures of La3Ni2O7 by high-resolution angle-resolved photoemmission spectroscopy. The Fermi surface and band structures of La3Ni2O7 are observed and compared with the band structure calculations. A flat band is formed from the Ni-3dz2 orbitals around the zone corner which is 50meV below the Fermi level. Strong electron correlations are revealed which are orbital- and momentum-dependent. Our observations will provide key information to understand the origin of high temperature superconductivity in La3Ni2O7.Comment: 18 pages, 4 figure

    MUSiC : a model-unspecific search for new physics in proton-proton collisions at root s=13TeV

    Get PDF
    Results of the Model Unspecific Search in CMS (MUSiC), using proton-proton collision data recorded at the LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1), are presented. The MUSiC analysis searches for anomalies that could be signatures of physics beyond the standard model. The analysis is based on the comparison of observed data with the standard model prediction, as determined from simulation, in several hundred final states and multiple kinematic distributions. Events containing at least one electron or muon are classified based on their final state topology, and an automated search algorithm surveys the observed data for deviations from the prediction. The sensitivity of the search is validated using multiple methods. No significant deviations from the predictions have been observed. For a wide range of final state topologies, agreement is found between the data and the standard model simulation. This analysis complements dedicated search analyses by significantly expanding the range of final states covered using a model independent approach with the largest data set to date to probe phase space regions beyond the reach of previous general searches.Peer reviewe

    Measurement of prompt open-charm production cross sections in proton-proton collisions at root s=13 TeV

    Get PDF
    The production cross sections for prompt open-charm mesons in proton-proton collisions at a center-of-mass energy of 13TeV are reported. The measurement is performed using a data sample collected by the CMS experiment corresponding to an integrated luminosity of 29 nb(-1). The differential production cross sections of the D*(+/-), D-+/-, and D-0 ((D) over bar (0)) mesons are presented in ranges of transverse momentum and pseudorapidity 4 < p(T) < 100 GeV and vertical bar eta vertical bar < 2.1, respectively. The results are compared to several theoretical calculations and to previous measurements.Peer reviewe

    Measurement of t(t)over-bar normalised multi-differential cross sections in pp collisions at root s=13 TeV, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions

    Get PDF
    Peer reviewe
    corecore