174 research outputs found
Pro-angiogenic photo-crosslinked silk fibroin hydrogel: a potential candidate for repairing alveolar bone defects
Objective: This study aimed to develop a pro-angiogenic hydrogel with in situ gelation ability for alveolar bone defects repair. Methodology: Silk fibroin was chemically modified by Glycidyl Methacrylate (GMA), which was evaluated by proton nuclear magnetic resonance (1H-NMR). Then, the photo-crosslinking ability of the modified silk fibroin was assessed. Scratch and transwell-based migration assays were conducted to investigate the effect of the photo-crosslinked silk fibroin hydrogel on the migration of human umbilical vein endothelial cells (HUVECs). In vitro angiogenesis was conducted to examine whether the photo-crosslinked silk fibroin hydrogel would affect the tube formation ability of HUVECs. Finally, subcutaneous implantation experiments were conducted to further examine the pro-angiogenic ability of the photo-crosslinked silk fibroin hydrogel, in which the CD31 and α-smooth muscle actin (α-SMA) were stained to assess neovascularization. The tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were also stained to evaluate inflammatory responses after implantation. Results: GMA successfully modified the silk fibroin, which we verified by our 1H-NMR and in vitro photo-crosslinking experiment. Scratch and transwell-based migration assays proved that the photo-crosslinked silk fibroin hydrogel promoted HUVEC migration. The hydrogel also enhanced the tube formation of HUVECs in similar rates to Matrigel®. After subcutaneous implantation in rats for one week, the hydrogel enhanced neovascularization without triggering inflammatory responses. Conclusion: This study found that photo-crosslinked silk fibroin hydrogel showed pro-angiogenic and inflammation inhibitory abilities. Its photo-crosslinking ability makes it suitable for matching irregular alveolar bone defects. Thus, the photo-crosslinkable silk fibroin-derived hydrogel is a potential candidate for constructing scaffolds for alveolar bone regeneration
Optically levitated gyroscopes with a MHz rotating micro-rotor
The optically levitated particles have been driven to rotate at an ultra-high
speed of GHz, and the gyroscopic application of these levitated particles to
measure angular motion have long been explored. However, this gyroscope has not
been proven either theoretically or experimentally. Here, a rotor gyroscope
based on optically levitated high-speed rotating particles is proposed. In
vacuum, an ellipsoidal vaterite particle with 3.58 m average diameter is
driven to rotate at MHz, and the optical axis orientation of the particle is
measured by the particle rotational signal. The external inputted angular
velocity makes the optical axis deviate from the initial position, which
changes the frequency and amplitude of the rotational signal. The inputted
angular velocity is hence detected by the rotational signal, and the angular
rate bias instability of the prototype is measured to be . It is the
smallest rotor gyroscope in the world, and the bias instability can be further
improved up to theoretically by cooling the motion and increasing
the angular moment of the levitated particle. Our work opens a new application
paradigm of the levitated optomechanical systems and possibly bring the rotor
gyroscope to the quantum realm
Transient enhancement of magnetization damping in CoFeB film via pulsed laser excitation
Laser-induced spin dynamics of in-plane magnetized CoFeB films has been studied by using time-resolved magneto-optical Kerr effect measurements. While the effective demagnetization field shows little dependence on the pump laser fluence, the intrinsic damping constant has been found to be increased from 0.008 to 0.076 with the increase in the pump fluence from 2 mJ/cm2 to 20 mJ/cm2. This sharp enhancement has been shown to be transient and ascribed to the heating effect induced by the pump laser excitation, as the damping constant is almost unchanged when the pump-probe measurements are performed at a fixed pump fluence of 5 mJ/cm2 after irradiation by high power pump pulses
Transient enhancement of magnetization damping in CoFeB film via pulsed laser excitation
Laser-induced spin dynamics of in-plane magnetized CoFeB films has been studied by using time-resolved magneto-optical Kerr effect measurements. While the effective demagnetization field shows little dependence on the pump laser fluence, the intrinsic damping constant has been found to be increased from 0.008 to 0.076 with the increase in the pump fluence from 2 mJ/cm2 to 20 mJ/cm2. This sharp enhancement has been shown to be transient and ascribed to the heating effect induced by the pump laser excitation, as the damping constant is almost unchanged when the pump-probe measurements are performed at a fixed pump fluence of 5 mJ/cm2 after irradiation by high power pump pulses
Femtosecond laser-heating effect on the magnetization dynamics in perpendicularly magnetized Ta/CoFeB/MgO film
We have studied the effect of ultrafast laser-heating on the magnetization dynamics of perpendicularly magnetized CoFeB film by means of the time-resolved magneto-optical Kerr rotation effect. The effective perpendicular magnetic anisotropy field HK is significantly decreased with enhancing the pump laser-fluence in a moderate range of 5-12 mJ cm-2. The Gilbert damping, however, is found to be independent of the pump fluence. These findings provide a new method of separately manipulating the Gilbert damping and perpendicular magnetic anisotropy
Component manipulated magnetic anisotropy and damping in Heusler-like compound Co2+xFe1-xAl
The component dependence of the magnetocrystalline anisotropy and the damping has been investigated in epitaxial Heusler-like compound Co2+xFe1-xAl films grown by molecular beam epitaxy (MBE) with x = -0.4, -0.2, 0, 0.2, and 0.4. All the films show a component tunable four-fold magnetocrystalline anisotropy with the easy axis along [1 1 0] orientation. The time resolved magneto-optic Kerr effect measurements reveal that the damping constant can be tuned in a range of 0.0065-0.0156 with a minimum value of 0.0065 at x = -0.2. This work provides a new approach to manipulate the magnetic dynamic properties of Heusler alloy Co2FeAl by adjusting the proportion of Co and Fe
Depinning of domain walls in permalloy nanowires with asymmetric notches
E ective control of the domain wall (DW) motion along the magnetic nanowires is of great importance for fundamental research and potential application in spintronic devices. In this work, a series of permalloy nanowires with an asymmetric notch in the middle were fabricated with only varying the width (d) of the right arm from 200 nm to 1000 nm. The detailed pinning and depinning processes of DWs in these nanowires have been studied by using focused magneto-optic Kerr e ect (FMOKE) magnetometer, magnetic force microscopy (MFM) and micromagnetic simulation. The experimental results unambiguously exhibit the presence of a DW pinned at the notch in a typical sample with d equal to 500 nm. At a certain range of 200 nm < d < 500 nm, both the experimental and simulated results show that the DW can maintain or change its chirality randomly during passing through the notch, resulting in two DW depinning elds. Those two depinning elds have opposite d dependences, which may be originated from di erent potential well/barrier generated by the asymmetric notch with varying d
- …