80 research outputs found

    Cloning and function analysis of DlWRKY9 gene in longan (Dimocarpus longan)

    Get PDF
    WRKY is one of the largest plant transcription factors (TFs) which is widely involved in plant growth, development, and responses to stresses. In the present study, a WRKY TF DlWRKY9 was cloned from longan (Dimocarpus longan). The coding sequence (CDS) of DlWRKY9 is 762 bp in length and encodes 253 amino acids. It has a typical WRKY domain and zinc finger structure which belongs to type IIa WRKY protein. The molecular weight of DlWRKY9 protein was 30.27kda and the theoretical isoelectric point (PI) was 5.24. It is an unstable hydrophilic protein. The secondary structure of DlWRKY9 protein consists of helical structure (17.39%), extended chain (8.70%) and other structures (turn and random coil) (73.91%). The amino acid sequence of DlWRKY9 protein had the highest similarity with DlWRKY9 (xp_006450293.1) of citrus Clementina. DlWRKY9 gene promoter elements contain light, abscisic acid, gibberellin, jasmonic acid and other response elements. The results of qRT-PCR showed that the relative expression level of DlWRKY9 gene in pericarp was higher, followed by young fruits and floral organs. Meanwhile, DlWRKY9 gene specifically down-regulated in the early stage of flower induction in ‘Sijimi’ (SJ) longan. The results of transient expression of Arabidopsis protoplasts showed that the fluorescence signal was mainly concentrated in the nucleus. Moreover, overexpression of DlWRKY9 in Arabidopsis promoted early flowering. These results provide useful information for revealing the biological roles of DlWRKY9 in longan and increase our understanding of the WRKY family in fruit trees

    Cloning and function analysis of DlWRKY9 gene in longan (Dimocarpus longan)

    Get PDF
    WRKY is one of the largest plant transcription factors (TFs) which is widely involved in plant growth, development, and responses to stresses. In the present study, a WRKY TF DlWRKY9 was cloned from longan (Dimocarpus longan). The coding sequence (CDS) of DlWRKY9 is 762 bp in length and encodes 253 amino acids. It has a typical WRKY domain and zinc finger structure which belongs to type IIa WRKY protein. The molecular weight of DlWRKY9 protein was 30.27kda and the theoretical isoelectric point (PI) was 5.24. It is an unstable hydrophilic protein. The secondary structure of DlWRKY9 protein consists of helical structure (17.39%), extended chain (8.70%) and other structures (turn and random coil) (73.91%). The amino acid sequence of DlWRKY9 protein had the highest similarity with DlWRKY9 (xp_006450293.1) of citrus Clementina. DlWRKY9 gene promoter elements contain light, abscisic acid, gibberellin, jasmonic acid and other response elements. The results of qRT-PCR showed that the relative expression level of DlWRKY9 gene in pericarp was higher, followed by young fruits and floral organs. Meanwhile, DlWRKY9 gene specifically down-regulated in the early stage of flower induction in ‘Sijimi’ (SJ) longan. The results of transient expression of Arabidopsis protoplasts showed that the fluorescence signal was mainly concentrated in the nucleus. Moreover, overexpression of DlWRKY9 in Arabidopsis promoted early flowering. These results provide useful information for revealing the biological roles of DlWRKY9 in longan and increase our understanding of the WRKY family in fruit trees

    Gender-specific association between blood cell parameters and hyperuricemia in high-altitude areas

    Get PDF
    BackgroundHyperuricemia is a common metabolic disorder linked to various health conditions. Its prevalence varies among populations and genders, and high-altitude environments may contribute to its development. Understanding the connection between blood cell parameters and hyperuricemia in high-altitude areas can shed light on the underlying mechanisms. This study aimed to investigate the relationship between blood cell parameters and hyperuricemia in high-altitude areas, with a particular focus on gender differences.MethodsWe consecutively enrolled all eligible Tibetan participants aged 18–60 who were undergoing routine medical examinations at the People’s Hospital of Chaya County between January and December 2022. During this period, demographic and laboratory data were collected to investigate the risk factors associated with hyperuricemia.ResultsAmong the participants, 46.09% were diagnosed with hyperuricemia. In the male cohort, significant correlations were found between serum uric acid (SUA) levels and red blood cell (RBC) count, creatinine (Cr). Urea, alanine transaminase (ALT), and albumin (ALB). Notably, RBC exhibited the strongest association. Conversely, in the female cohort, elevated SUA levels were associated with factors such as white blood cell (WBC) count. Urea, ALT, and ALB, with WBC demonstrating the most significant association. Further analysis within the female group revealed a compelling relationship between SUA levels and specific white blood cell subtypes, particularly neutrophils (Neu).ConclusionThis study revealed gender-specific associations between SUA levels and blood cell parameters in high-altitude areas. In males, RBC count may play a role in hyperuricemia, while in females, WBC count appears to be a significant factor. These findings contribute to our understanding of metabolic dynamics in high-altitude regions but require further research for comprehensive mechanistic insights

    A transcript profiling approach reveals the zinc finger transcription factor ZNF191 is a pleiotropic factor

    Get PDF
    BACKGROUND: The human zinc finger protein 191 (ZNF191) is a member of the SCAN domain family of Krüppel-like zinc finger transcription factors. ZNF191 shows 94% identity to its mouse homologue zinc finger protein 191(Zfp191), which is the most highly conserved among the human-mouse SCAN family member orthologues pairs. Zfp191 is widely expressed during early embryogenesis and in adult organs. Moreover, Zfp191(-/- )embryos have been shown to be severely retarded in development and die approximately at embryonic day E7.5. ZNF191 can specifically interact with the widespread TCAT motif which constitutes the HUMTH01 microsatellite in the tyrosine hydroxylase (TH) gene. Allelic variations of HUMTH01 have been stated to have a quantitative silencing effect on TH gene expression and to correlate with quantitative and qualitative changes in the binding by ZNF191. In addition, ZNF191 displays a suppressive effect on the transcription; however, little downstream targets have identified. RESULTS: We searched for ZNF191 target genes by using a transient overexpression and knockdown strategy in the human embryo kidney (HEK293) cells. Microarray analyses identified 6094 genes modulated by overexpression of ZNF191 and 3332 genes regulated by knockdown of ZNF191, using a threshold of 1.2-fold. Several interested candidate genes, validated by real time RT-PCR, were correlated well with the array data. Interestingly, 1456 genes were identified in both transient overexpression and transient knockdown strategies. The GenMAPP and MappFinder software packages were further used for pathway analysis of these significantly altered genes. Several gene pathways were found to be involved in processes of the regulation of kinase activity, transcription, angiogenesis, brain development and response to DNA damage. CONCLUSION: Our analysis reveals for the first time that ZNF191 is a pleiotropic factor that has a role in hematopoiesis, brain development and cancers

    Effectiveness and cost-effectiveness of eliminating cervical cancer through a tailored optimal pathway: a modeling study.

    Get PDF
    BACKGROUND: The World Health Assembly has adopted a global strategy to eliminate cervical cancer. However, neither the optimal pathway nor the corresponding economic and health benefits have been evaluated. We take China as an example to assess the optimal pathway towards elimination and the cost-effectiveness of tailored actions. METHODS: A validated hybrid model was used to assess the costs and benefits of alternative strategies combining human papillomavirus vaccination, cervical screening, and treatment of pre-invasive lesions and invasive cancer for females with different immunization history. All Chinese females living or projected to be born during 2015-2100, under projected trends in aging, urbanization, and sexual activity, were considered. Optimal strategies were determined by cost-effectiveness efficiency frontiers. Primary outcomes were cervical cancer cases and deaths averted and incremental cost-effectiveness ratios (ICERs). We employed a lifetime horizon from a societal perspective. One-way and probabilistic sensitivity analyses evaluate model uncertainty. RESULTS: The optimal pathway represents an integration of multiple tailored strategies from females with different immunization history. If China adopts the optimal pathway, the age-standardized incidence of cervical cancer is predicted to decrease to fewer than four new cases per 100,000 women (i.e., elimination) by 2047 (95% confidence interval 2043 to 2050). Compared to the status quo, the optimal pathway would avert a total of 7,509,192 (6,922,744 to 8,359,074) cervical cancer cases and 2,529,873 (2,366,826 to 2,802,604) cervical cancer deaths in 2021-2100, with the discounted ICER being $- 339 (- 687 to - 79) per quality-adjusted life-year. CONCLUSIONS: By adopting an optimal pathway from 2021 (namely, the year of the first Chinese Centennial Goals) onwards, cervical cancer could be eliminated by the late 2040s (namely, ahead of the second Chinese Centennial Goals) while saving net economic costs in China

    Insights into Mad2 Regulation in the Spindle Checkpoint Revealed by the Crystal Structure of the Symmetric Mad2 Dimer

    Get PDF
    In response to misaligned sister chromatids during mitosis, the spindle checkpoint protein Mad2 inhibits the anaphase-promoting complex or cyclosome (APC/C) through binding to its mitotic activator Cdc20, thus delaying anaphase onset. Mad1, an upstream regulator of Mad2, forms a tight core complex with Mad2 and facilitates Mad2 binding to Cdc20. In the absence of its binding proteins, free Mad2 has two natively folded conformers, termed N1-Mad2/open-Mad2 (O-Mad2) and N2-Mad2/closed Mad2 (C-Mad2), with C-Mad2 being more active in APC/CCdc20 inhibition. Here, we show that whereas O-Mad2 is monomeric, C-Mad2 forms either symmetric C-Mad2–C-Mad2 (C–C) or asymmetric O-Mad2–C-Mad2 (O–C) dimers. We also report the crystal structure of the symmetric C–C Mad2 dimer, revealing the basis for the ability of unliganded C-Mad2, but not O-Mad2 or liganded C-Mad2, to form symmetric dimers. A Mad2 mutant that predominantly forms the C–C dimer is functional in vitro and in living cells. Finally, the Mad1–Mad2 core complex facilitates the conversion of O-Mad2 to C-Mad2 in vitro. Collectively, our results establish the existence of a symmetric Mad2 dimer and provide insights into Mad1-assisted conformational activation of Mad2 in the spindle checkpoint

    The G-protein Alpha Subunit Gsα Is A Tumor Suppressor In Sonic Hedgehog-driven Medulloblastoma

    Get PDF
    Medulloblastoma, the most common malignant childhood brain tumor, exhibits distinct molecular subtypes and cellular origins. Genetic alterations driving medulloblastoma initiation and progression remain poorly understood. Herein, we identify GNAS, encoding the G-protein Gsα, as a potent tumor suppressor gene that defines a subset of aggressive Sonic Hedgehog (Shh)-driven human medulloblastomas. Ablation of the single Gnas gene in anatomically-distinct progenitors is sufficient to induce Shh-associated medulloblastomas, which recapitulate their human counterparts. Gsα is highly enriched at the primary cilium of granule neuron precursors and suppresses Shh-signaling by regulating both the cAMP-dependent pathway and ciliary trafficking of Hedgehog pathway components. Elevation of a Gsα effector, cAMP, effectively inhibits tumor cell proliferation and progression in Gnas mutants. Thus, our gain- and loss-of-function studies identify a previously unrecognized tumor suppressor function for Gsα that acts as a molecular link across Shh-group medulloblastomas of disparate cellular and anatomical origins, illuminating G-protein modulation as a potential therapeutic avenue
    corecore