13 research outputs found

    Strong Convergence Theorems for Generalized Split Feasibility Problems in Banach Spaces

    No full text
    In this paper, we establish new strong convergence theorems of proposed algorithms under suitable new conditions for the generalized split feasibility problem in Banach spaces. As applications, new strong convergence theorems for equilibrium problems, fixed point problems and split common fixed point problems are also studied. Our new results are distinct from recent results on the topic in the literature

    Improved carrier confinement and stimulated recombination rate in GaN-based vertical-cavity surface-emitting lasers with buried p-AlGaN inversion layer

    No full text
    A GaN-based vertical cavity surface emitting laser (VCSEL) featuring a buried ring-shape p-Al0.10Ga0.90N inside n-GaN contact layer for lateral electron confinement is proposed. The p-AlGaN layer inserted in n-GaN forms an n-p-n structure, acting as a potential barrier to prevent vertical electron migration outside the aperture of the VCSEL, where optical gain is accumulated. By adjusting the thickness and position of the p-AlGaN layer, electron concentration and stimulated recombination rate in the aperture of the VCSEL increased significantly. Consequently, the output power of VCSEL with buried p-AlGaN layer increases by 57% compared to the conventional VCSEL at an injection current of 10 mA. The detailed mechanism responsible for this enhancement is further explored. This work suggests that the introduction of the buried p-AlGaN layer in VCSEL can provide new line of thought in achieving effective current confinement in the development of high-efficient, low-threshold solid-state lasers

    Acetaldehyde Induces Neurotoxicity In Vitro via Oxidative Stress- and Ca2+ Imbalance-Mediated Endoplasmic Reticulum Stress

    No full text
    Excessive drinking can damage brain tissue and cause cognitive dysfunction. Studies have found that the early stage of neurodegenerative disease is closely related to heavy drinking. Acetaldehyde (ADE) is the main toxic metabolite of alcohol. However, the exact mechanisms of ADE-induced neurotoxicity are not fully clear. In this article, we studied the cytotoxic effect of ADE in HT22 cells and primary cultured cortical neuronal cells. We found that ADE exhibited cytotoxicities against HT22 cells and primary cultured cortical neuronal cells in dose-dependent manners. Furthermore, ADE induced apoptosis of HT22 cells by upregulating the expression of caspase family proapoptotic proteins. Moreover, ADE treatment could significantly increase the intracellular Ca2+ and reactive oxygen species (ROS) levels and activate endoplasmic reticulum stress (ERS) in HT22 cells. ADE upregulated ERS-related CHOP expression dose-dependently in primary cultured cortical neuronal cells. In addition, inhibition of ROS with antioxidant N-acetyl-L-cysteine (NAC) reduced the accumulation of ROS and reversed ADE-induced increase of ERS-related protein and apoptosis-related protein levels. Mitigation of ERS with ERS inhibitor 4-PBA obviously suppressed ADE-induced apoptosis and the expression of ERS-related proteins. Therefore, ADE induces neurotoxicity of HT22 cells via oxidative stress- and Ca2+ imbalance-mediated ERS

    Histone Lysine-Specific Methyltransferases and Demethylases in Carcinogenesis: New Targets for Cancer Therapy and Prevention

    No full text
    Aberrant histone lysine methylation that is controlled by histone lysine methyltransferases (KMTs) and demethylases (KDMs) plays significant roles in carcinogenesis. Infections by tumor viruses or parasites and exposures to chemical carcinogens can modify the process of histone lysine methylation. Many KMTs and KDMs contribute to malignant transformation by regulating the expression of human telomerase reverse transcriptase (hTERT), forming a fused gene, interacting with proto-oncogenes or being up-regulated in cancer cells. In addition, histone lysine methylation participates in tumor suppressor gene inactivation during the early stages of carcinogenesis by regulating DNA methylation and/or by other DNA methylation independent mechanisms. Furthermore, recent genetic discoveries of many mutations in KMTs and KDMs in various types of cancers highlight their numerous roles in carcinogenesis and provide rare opportunities for selective and tumor-specific targeting of these enzymes. The study on global histone lysine methylation levels may also offer specific biomarkers for cancer detection, diagnosis and prognosis, as well as for genotoxic and non-genotoxic carcinogenic exposures and risk assessment. This review summarizes the role of histone lysine methylation in the process of cellular transformation and carcinogenesis, genetic alterations of KMTs and KDMs in different cancers and recent progress in discovery of small molecule inhibitors of these enzymes

    Monolayer Nickel Cobalt Hydroxyl Carbonate for High Performance All-Solid-State Asymmetric Supercapacitors

    No full text
    The emergence of atomically thick nanolayer materials, which feature a short ion diffusion channel and provide more exposed atoms in the electrochemical reactions, offers a promising occasion to optimize the performance of supercapacitors on the atomic level. In this work, a novel monolayer Ni–Co hydroxyl carbonate with an average thickness of 1.07 nm is synthesized via an ordinary one-pot hydrothermal route for the first time. This unique monolayer structure can efficiently rise up the exposed electroactive sites and facilitate the surface dependent electrochemical reaction processes, and thus results in outstanding specific capacitance of 2266 F g<sup>–1</sup>. Based on this material, an all-solid-state asymmetric supercapacitor is developed adopting alkaline PVA (poly­(vinyl alcohol)) gel (PVA/KOH) as electrolyte, which performs remarkable cycling stability (no capacitance fade after 19 000 cycles) together with promising energy density of 50 Wh kg<sup>–1</sup> (202 μWh cm<sup>–2</sup>) and high power density of 8.69 kW kg<sup>–1</sup> (35.1 mW cm<sup>–2</sup>). This as-assembled all-solid-state asymmetric supercapacitor (AASC) holds great potential in the field of portable energy storage devices

    Clinical status of patients 1 year after hospital discharge following recovery from COVID-19: a prospective cohort study

    No full text
    Abstract Background The long-term clinical status of coronavirus disease 2019 (COVID-19) in recovered patients remains largely unknown. This prospective cohort study evaluated clinical status of COVID-19 and explored the associated risk factors. Methods At the outpatient visit, patients underwent routine blood tests, physical examinations, pulmonary function tests, 6-min walk test, high-resolution computed tomography (CT) of the chest, and extrapulmonary organ function tests. Results 230 patients were analyzed. Half (52.7%) reported at least one symptom, most commonly fatigue (20.3%) and sleep difficulties (15.8%). Anxiety (8.2%), depression (11.3%), post-traumatic symptoms (10.3%), and sleep disorders (26.3%) were also reported. Diffusion impairments were found in 35.4% of the patients. Abnormal chest CT scans were present in 63.5% of the patients, mainly reticulation and ground-glass opacities. Further, a persistent decline in kidney function was observed after discharge. SARS-CoV-2-specific antibodies of IgA, IgG, and IgM were positive in 56.4%, 96.3%, and 15.2% of patients, respectively. Multivariable logistic regression showed that disease severity, age, and sex were closely related to patient recovery. Conclusions One year after hospital discharge, patients recovered from COVID-19 continued to experience both pulmonary and extrapulmonary dysfunction. While paying attention to pulmonary manifestations of COVID-19, follow-up studies on extrapulmonary manifestations should be strengthened
    corecore