540 research outputs found
Does the way in which a firm interacts with its network partners influence its formulation of product innovation strategies?
Peer reviewedPostprin
Analytic study on the foundation of shaker based on AIR spring
In view of the limitation of the traditional installation method of the shaker placed on the floor structure, a method of foundation isolation based on the AIR spring is proposed. According to the dynamic characteristics of the AIR spring, the relationship between the natural frequency and the parameters, such as the air pressure and the weight of the load, are analyzed. In order to evaluate the coupling properties between the vibration isolation system and the vibration test system, the factors affecting the vibration isolation transfer function of the system and the response of the foundation under vibration excitation were analyzed. Test results revealed that: it is feasible to adjust the natural frequency of system, to obtain the good isolation performance and stationary dynamic response, by reasonably choosing the structural parameters of the AIR spring and adjusting the internal inflation pressure of spring
Protective effect of dehydroandrographolide on obstructive cholestasis in bile duct-ligated mice
Background: Dehydroandrographolide (DA) is the main contributor to the therapeutic properties of the medicinal plant Andrographis paniculata (AP). However, it is unknown whether DA has a hepatoprotective effect on obstructive cholestasis in mice and humans.
Methods: We administered DA to mice for 5 days prior to bile duct ligation (BDL) and for the 7 days. Liver function markers, liver histology and necrosis, compensatory responses of hepatocytes, liver fibrosis and the expression of hepatic fibrogenesis markers were evaluated in BDL mice and/or human LX-2 cells.
Results: Mice treated with DA demonstrated lower levels of serum alanine transarninase (ALT), milder liver damage, liver necrosis and fibrosis formation than in vehicle control with carboxymethylcellulose (CMC) mice after BDL. DA treatment also enhanced the Mrp3 expression of hepatocytes but not Mrp4 following BDL. Further, DA treatment in BDL mice significantly reduced liver mRNA and/or protein expression of Tgf-Ī², Col1a1, Ī±-Sma and Mmp2. This result was also supported by hydroxyproline analysis. The molecular mechanisms of DA treatment were also assessed in human hepatic stellate cell line (LX-2 cell). DA treatment significantly inhibited Tgf-Ī²-induced Col1a1, Mmp2 and Ī±-Sma expression in human LX-2 cells. These data suggested that DA treatment reduced liver damage through development of a hepatic adaptive response and inhibition of the activation of HSCs, which led to a reduction in liver fibrosis formation in BDL mice.
Conclusions: DA treatment protected against liver damage and fibrosis following BDL and might be an effective therapy for extrahepatic cholestasis due to bile duct obstruction
Experimental Realization of Acoustic Chern Insulator
Topological insulators are new states of matter in which the topological
phase originates from symmetry breaking. Recently, time-reversal invariant
topological insulators were demonstrated for classical wave systems, such as
acoustic systems, but limited by inter-pseudo-spin or inter-valley
backscattering. This challenge can be effectively overcome via breaking the
time-reversal symmetry. Here, we report the first experimental realization of
acoustic topological insulators with nonzero Chern numbers, viz., acoustic
Chern insulator (ACI), by introducing an angular-momentum-biased resonator
array with broken Lorentz reciprocity. High Q-factor resonance is leveraged to
reduce the required speed of rotation. Experimental results show that the ACI
featured with a stable and uniform metafluid flow bias supports one-way
nonreciprocal transport of sound at the boundaries, which is topologically
immune to the defect-induced scatterings. Our work opens up opportunities for
exploring unique observable topological phases and developing practical
nonreciprocal devices in acoustics.Comment: 16 pages, 4 figure
Plasma noise in TianQin time delay interferometry
TianQin is a proposed geocentric space-based gravitational wave observatory
mission, which requires time-delay interferometry (TDI) to cancel laser
frequency noise. With high demands for precision, solar-wind plasma environment
at km above the Earth may constitute a non-negligible noise source
to laser interferometric measurements between satellites, as charged particles
perturb the refractivity along light paths. In this paper, we first assess the
plasma noises along single links from space-weather models and numerical
orbits, and analyze the time and frequency domain characteristics.
Particularly, to capture the plasma noise in the entire measurement band of
Hz, we have performed additional space-weather
magnetohydrodynamic simulations in finer spatial and temporal resolutions and
utilized Kolmogorov spectra in high-frequency data generation. Then we evaluate
the residual plasma noises of the first- and second-generation TDI
combinations. Both analytical and numerical estimations have shown that under
normal solar conditions the plasma noise after TDI is less than the secondary
noise requirement. Moreover, TDI is shown to exhibit moderate suppression on
the plasma noise below Hz due to noise correlation between
different arms, when compared with the secondary noise before and after TDI.Comment: 12 pages, 15 figures, accepted by Phys. Rev.
Multiple distinct small RNAs originate from the same microRNA precursors
Abstract Background MicroRNAs (miRNAs), which originate from precursor transcripts with stem-loop structures, are essential gene expression regulators in eukaryotes. Results We report 19 miRNA precursors in Arabidopsis that can yield multiple distinct miRNA-like RNAs in addition to miRNAs and miRNA*s. These miRNA precursor-derived miRNA-like RNAs are often arranged in phase and form duplexes with an approximately two-nucleotide 3'-end overhang. Their production depends on the same biogenesis pathway as their sibling miRNAs and does not require RNA-dependent RNA polymerases or RNA polymerase IV. These miRNA-like RNAs are methylated, and many of them are associated with Argonaute proteins. Some of the miRNA-like RNAs are differentially expressed in response to bacterial challenges, and some are more abundant than the cognate miRNAs. Computational and expression analyses demonstrate that some of these miRNA-like RNAs are potentially functional and they target protein-coding genes for silencing. The function of some of these miRNA-like RNAs was further supported by their target cleavage products from the published small RNA degradome data. Our systematic examination of public small-RNA deep sequencing data from four additional plant species (Oryza sativa, Physcomitrella patens, Medicago truncatula and Populus trichocarpa) and four animals (Homo sapiens, Mus musculus, Caenorhabditis elegans and Drosophila) shows that such miRNA-like RNAs exist broadly in eukaryotes. Conclusions We demonstrate that multiple miRNAs could derive from miRNA precursors by sequential processing of Dicer or Dicer-like proteins. Our results suggest that the pool of miRNAs is larger than was previously recognized, and miRNA-mediated gene regulation may be broader and more complex than previously thought
- ā¦