103 research outputs found

    Microglia: The breakthrough to treat neovascularization and repair blood-retinal barrier in retinopathy

    Get PDF
    Microglia are the primary resident retinal macrophages that monitor neuronal activity in real-time and facilitate angiogenesis during retinal development. In certain retinal diseases, the activated microglia promote retinal angiogenesis in hypoxia stress through neurovascular coupling and guide neovascularization to avascular areas (e.g., the outer nuclear layer and macula lutea). Furthermore, continuously activated microglia secrete inflammatory factors and expedite the loss of the blood-retinal barrier which causes irreversible damage to the secondary death of neurons. In this review, we support microglia can be a potential cellular therapeutic target in retinopathy. We briefly describe the relevance of microglia to the retinal vasculature and blood-retinal barrier. Then we discuss the signaling pathway related to how microglia move to their destinations and regulate vascular regeneration. We summarize the properties of microglia in different retinal disease models and propose that reducing the number of pro-inflammatory microglial death and conversing microglial phenotypes from pro-inflammatory to anti-inflammatory are feasible for treating retinal neovascularization and the damaged blood-retinal barrier (BRB). Finally, we suppose that the unique properties of microglia may aid in the vascularization of retinal organoids

    Down-regulation of submandibular gland AQP5 following parasympathetic denervation in rats

    Get PDF
    Following chorda tympani denervation (CTD, parasympathetomy), the protein levels of aquaporin5 (AQP5) as well as AQP1 and Na+K+ATPase α-subunit in the rat submandibular gland (SMG) were found to be decreased significantly. However, the level of another membrane protein, dipeptidyl peptidase IV was not affected by CTD, suggesting a selective reduction of AQP5, AQP1, and Na+K+ATPase1α-subunit proteins by CTD. However, the AQP5 mRNA level was scarcely affected by CTD, which suggested that transcription process of AQP5 was unaffected by this operation. AQP5 protein was shown to be degraded in vitro by the extract of the SMG obtained from normal rat ; inhibitor experiments in vitro suggested cathepsin B was a responsible enzyme. Co-localization of AQP5 and LAMP-2, a lysosomal marker, implicated AQP5 is degraded in lysosomes. A significant increase in the protein levels of LC3-II, an autophagy marker, at day 1 after CTD, and co-localization of the LC3 protein and AQP5, suggested that CTD activated autophagy of SMG, leading to AQP5 degradation

    Rapid and sensitive determination of Se and heavy metals in foods using electrothermal vaporization inductively coupled plasma mass spectrometry with a novel transportation system

    Get PDF
    Rapid, sensitive and simultaneous determination of trace multi-elements in various plant food samples such as grain, oilseed, vegetable and tea is always a challenge thus far. In this work, a rapid determination method for Se, Cd, As and Pb in food samples by inductively coupled plasma mass spectrometry (ICP-MS) using slurry sampling electrothermal vaporization (SS-ETV) was developed. To improve the analytical sensitivity and precision as well as eliminate the memory effect, a gas turbulator line and signal delay device (SDD) were for the first time designed for the graphite furnace (GF) ETV coupled with ICP-MS. The signal acquisition parameters of ICP-MS, ashing and vaporization conditions, and the flow rates of carrier gas and gas turbulator were investigated for Se, Cd, As and Pb in food samples. Under the optimized conditions, the limits of determination (LODs) for Se, Cd, As and Pb were 0.5 ng g−1, 0.3 ng g−1, 0.3 ng g−1 and 0.6 ng g−1, respectively; the limits of quantification (LOQs) for Se, Cd, As and Pb were 1.7 ng g−1, 1.0 ng g−1, 1.0 ng g−1 and 1.9 ng g−1, respectively; linearity (R2) in the range of 1 to 4,000 ng g−1 was >0.999 using the standard addition method. This method was used to analyze 5 CRMs including rice, tea and soybeans, and the concentrations detected by this method were within the range of the certified values. The recoveries of Se, Cd, As and Pb in plant food matrices including grain, oilseed, celery, spinach, carrot and tea samples were 86–118% compared to the microwave digestion ICP-MS method; and the relative standard deviations (RSDs) were 1.2–8.9% for real food sample analysis, proving a good precision and accuracy for the simultaneous determination of multi-elements. The analysis time was less than 3 min, slurry preparation time < 5 min without sample digestion process. The proposed direct slurry sampling ICP-MS method is thus suitable for rapid and sensitive determination of Se, Cd, As and Pb in food samples with advantages such as simplicity, green and safety, as well as with a promising application potential in detecting more elements to protect food safety and human health

    Orbital parameters for an ELM white dwarf with a white dwarf companion: LAMOST J033847.06+413424.2

    Full text link
    Double white dwarf systems are of great astrophysical importance in the field of gravitational wave and Type Ia supernova. While the binary fraction of CO core white dwarf is about a few percents, the extremely low mass white dwarfs are all thought to be within binary systems. In this work, we report the orbital solution of a double degenerate system: J033847.06+413424.24, an extremely low mass He core white dwarf orbiting a CO core white dwarf. With LAMOST and P200, time domain spectroscopic observations have been made and spectral atmosphere parameters are estimated to be Teff∌22500T_{\rm eff}\sim22500 K and log g∌5.6g\sim5.6 dex. Combining Gaia parallax, 3D extinction, and evolution tracks, we estimate a radius of ∌0.12\sim0.12 R⊙R_{\odot} and a mass of ∌0.22\sim0.22 M⊙M_{\odot}. With the 37 single exposure spectra, the radial velocities are measured and the orbital parameters are estimated to be P=0.1253132(1)P=0.1253132(1) days, K1=289±4K1=289\pm4 km/s and Vsys=−41±3V_{sys}=-41\pm3 km/s. The radial velocity based system ephemeris is also provided. The light curves from several photometric surveys show no orbital modulation. The orbital solution suggests that the invisible companion has a minimum mass of about 0.60 M⊙M_{\odot} and is ∌0.79\sim0.79 M⊙M_{\odot} for an inclination of 60.0∘60.0^{\circ}, indicating most probably a CO core white dwarf. The system is expected to merge in about 1 Gyr. With present period and distance (∌596\sim596 pc) it can not irradiate strong enough gravitational wave for LISA. More double degenerate systems are expected to be discovered and parameterized as the LAMOST survey goes on.Comment: 12 pages, 11 figure

    Identification of differentially expressed genes of blood leukocytes for Schizophrenia

    Get PDF
    BackgroundSchizophrenia (SCZ) is a severe neurodevelopmental disorder with brain dysfunction. This study aimed to use bioinformatic analysis to identify candidate blood biomarkers for SCZ.MethodsThe study collected peripheral blood leukocyte samples of 9 SCZ patients and 20 healthy controls for RNA sequencing analysis. Bioinformatic analyses included differentially expressed genes (DEGs) analysis, pathway enrichment analysis, and weighted gene co-expression network analysis (WGCNA).ResultsThis study identified 1,205 statistically significant DEGs, of which 623 genes were upregulated and 582 genes were downregulated. Functional enrichment analysis showed that DEGs were mainly enriched in cell chemotaxis, cell surface, and serine peptidase activity, as well as involved in Natural killer cell-mediated cytotoxicity. WGCNA identified 16 gene co-expression modules, and five modules were significantly correlated with SCZ (p < 0.05). There were 106 upregulated genes and 90 downregulated genes in the five modules. The top ten genes sorted by the Degree algorithm were RPS28, BRD4, FUS, PABPC1, PCBP1, PCBP2, RPL27A, RPS21, RAG1, and RPL27. RAG1 and the other nine genes belonged to the turquoise and pink module respectively. Pathway enrichment analysis indicated that these 10 genes were mainly involved in processes such as Ribosome, cytoplasmic translation, RNA binding, and protein binding.ConclusionThis study finds that the gene functions in key modules and related enrichment pathways may help to elucidate the molecular pathogenesis of SCZ, and the potential of key genes to become blood biomarkers for SCZ warrants further validation

    The sky brightness and transparency in i-band at Dome A, Antarctica

    Full text link
    The i-band observing conditions at Dome A on the Antarctic plateau have been investigated using data acquired during 2008 with the Chinese Small Telescope ARray. The sky brightness, variations in atmospheric transparency, cloud cover, and the presence of aurorae are obtained from these images. The median sky brightness of moonless clear nights is 20.5 mag arcsec^{-2} in the SDSS ii band at the South Celestial Pole (which includes a contribution of about 0.06 mag from diffuse Galactic light). The median over all Moon phases in the Antarctic winter is about 19.8 mag arcsec^{-2}. There were no thick clouds in 2008. We model contributions of the Sun and the Moon to the sky background to obtain the relationship between the sky brightness and transparency. Aurorae are identified by comparing the observed sky brightness to the sky brightness expected from this model. About 2% of the images are affected by relatively strong aurorae.Comment: There are 1 Latex file and 14 figures accepted by A

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Permian-Triassic boundary microbialites (PTBMs) in soutwest China: implications for paleoenvironment reconstruction

    Get PDF
    Permian–Triassic boundary microbialites (PTBMs) are commonly interpreted to be a sedimentary response to upwelling of anoxic alkaline seawater and indicate a harsh marine environment in the Permian–Triassic transition. However, recent studies propose that PTBMs may instead be developed in an oxic environment, therefore necessitating the need to reassess the paleoenvironment of formation of PTBMs. This paper is an integrated study of the PTBM sequence at Yudongzi, northwest Sichuan Basin, which is one of the thickest units of PTBMs in south China. Analysis of conodont biostratigraphy, mega- to microscopic microbialite structures, stratigraphic variations in abundance and size of metazoan fossils, and total organic carbon (TOC) and total sulfur (TS) contents within the PTBM reveals the following results: (1) the microbialites occur mainly in the Hindeodus parvus Zone but may cross the Permian–Triassic boundary, and are comprised of, from bottom to top: lamellar thrombolites, dendritic thrombolites and lamellar-reticular thrombolites; (2) most metazoan fossils of the microbialite succession increase in abundance upsection, so does the sizes of bivalve and brachiopod fossils; (3) TOC and TS values of microbialites account respectively for 0.07 and 0.31 wt% on average, both of which are very low. The combination of increase in abundance and size of metazoan fossils upsection, together with the low TOC and TS contents, is evidence that the Yudongzi PTBMs developed in oxic seawater. We thus dispute the previous view, at least for the Chinese sequences, of low-oxygen seawater for microbialite growth, and question whether it is now appropriate to associate PTBMs with anoxic, harsh environments associated with the end-Permian extinction. Instead, we interpret those conditions as fully oxygenated.13th Five-Year Plan National Scientific and Technology Major Project (2016ZX05004002-001); National Natural Science Foundation of China (41602166)
    • 

    corecore