20,251 research outputs found

    Boosting the precision of virtual call integrity protection with partial pointer analysis for C++

    Full text link
    © 2017 Association for Computing Machinery. We present, Vip, an approach to boosting the precision of Virtual call Integrity Protection for large-scale real-world C++ programs (e.g., Chrome) by using pointer analysis for the first time. Vip introduces two new techniques: (1) a sound and scalable partial pointer analysis for discovering statically the sets of legitimate targets at virtual callsites from separately compiled C++ modules and (2) a lightweight instrumentation technique for performing (virtual call) integrity checks at runtime. Vip raises the bar against vtable hijacking attacks by providing stronger security guarantees than the CHA-based approach with comparable performance overhead. Vip is implemented in LLVM-3.8.0 and evaluated using SPEC programs and Chrome. Statically, Vip protects virtual calls more effectively than CHA by significantly reducing the sets of legitimate targets permitted at 20.3% of the virtual callsites per program, on average. Dynamically, Vip incurs an average (maximum) instrumentation overhead of 0.7% (3.3%), making it practically deployable as part of a compiler tool chain

    An energy-saving scheme of variable voltage control for three-phase induction motor drive systems

    Get PDF
    Author name used in this publication: X. D. XueAuthor name used in this publication: K. W. E. ChengRefereed conference paper2006-2007 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Material modelling and springback analysis for multi-stage rotary draw bending of thin-walled tube using homogeneous anisotropic hardening model

    Get PDF
    The aim of this paper is to compare several hardening models and to show their relevance for the prediction of springback and deformation of an asymmetric aluminium alloy tube in multi-stage rotary draw bending process. A three-dimensional finite-element model of the process is developed using the ABAQUS code. For material modelling, the newly developed homogeneous anisotropic hardening model is adopted to capture the Bauschinger effect and transient hardening behaviour of the aluminium alloy tube subjected to non-proportional loading. The material parameters of the hardening model are obtained from uniaxial tension and forward-reverse shear test results of tube specimens. This work shows that this approach reproduces the transient Bauschinger behaviour of the material reasonably well. However, a curve-crossing phenomenon observed for this material cannot be captured by the homogeneous anisotropic hardening model. For comparison purpose, the isotropic and combined isotropic-kinematic hardening models are also adopted for the analysis of the same problem. The predictions of springback and cross-section deformation based on these models are discussed. (C) 2014 The Authors. Published by Elsevier Ltd.open1134Nsciescopu

    Scheme for sharing classical information via tripartite entangled states

    Full text link
    We investigate schemes for quantum secret sharing and quantum dense coding via tripartite entangled states. We present a scheme for sharing classical information via entanglement swapping using two tripartite entangled GHZ states. In order to throw light upon the security affairs of the quantum dense coding protocol, we also suggest a secure quantum dense coding scheme via W state in analogy with the theory of sharing information among involved users.Comment: 4 pages, no figure. A complete rewrritten vession, accepted for publication in Chinese Physic

    A unique distant submillimeter galaxy with an X-ray-obscured radio-luminous active galactic nucleus

    Full text link
    We present a multiwavelength study of an atypical submillimeter galaxy in the GOODS-North field, with the aim to understand its physical properties of stellar and dust emission, as well as the central AGN activity. Although it is shown that the source is likely an extremely dusty galaxy at high redshift, its exact position of submillimeter emission is unknown. With the new NOEMA interferometric imaging, we confirm that the source is a unique dusty galaxy. It has no obvious counterpart in the optical and even NIR images observed with HST at lambda~<1.4um. Photometric-redshift analyses from both stellar and dust SED suggest it to likely be at z~>4, though a lower redshift at z~>3.1 cannot be fully ruled out (at 90% confidence interval). Explaining its unusual optical-to-NIR properties requires an old stellar population (~0.67 Gyr), coexisting with a very dusty ongoing starburst component. The latter is contributing to the FIR emission, with its rest-frame UV and optical light being largely obscured along our line of sight. If the observed fluxes at the rest-frame optical/NIR wavelengths were mainly contributed by old stars, a total stellar mass of ~3.5x10^11Msun would be obtained. An X-ray spectral analysis suggests that this galaxy harbors a heavily obscured AGN with N_H=3.3x10^23 cm^-2 and an intrinsic 2-10 keV luminosity of L_X~2.6x10^44 erg/s, which places this object among distant type 2 quasars. The radio emission of the source is extremely bright, which is an order of magnitude higher than the star-formation-powered emission, making it one of the most distant radio-luminous dusty galaxies. The combined characteristics of the galaxy suggest that the source appears to have been caught in a rare but critical transition stage in the evolution of submillimeter galaxies, where we are witnessing the birth of a young AGN and possibly the earliest stage of its jet formation and feedback.Comment: 13 pages in printer format, 10 figures, 1 table, accepted for publication in the A&
    corecore