23,195 research outputs found

    Analysis of excited quark propagator effects on neutron charge form factor

    Full text link
    The charge form factor and charge radius of neutron are investigated in the perturbative chiral quark model (PCQM) with considering both the ground and excited states in the quark propagator. A Cornell-like potential is extracted in accordance with the predetermined ground state quark wavefunction, and the excited quark states are derived by solving the Dirac equation with the extracted PCQM potential numerically. The study reveals that the contributions of the excited quark states are considerably influential in the charge form factor and charge radius of neutron as expected, and the total results are significantly improved and increased by nearly four times by including the excited states in the quark propagator. The theoretical PCQM results are found, including the ground and excited quark propagators, in good agreement with the recent lattice QCD values at pion mass of about 130 MeV.Comment: 8 pages, 8 figure

    FFT-LB modeling of thermal liquid-vapor systems

    Full text link
    We further develop a thermal LB model for multiphase flows. In the improved model, we propose to use the FFT scheme to calculate both the convection term and external force term. The usage of FFT scheme is detailed and analyzed. By using the FFT algorithm spatiotemporal discretization errors are decreased dramatically and the conservation of total energy is much better preserved. A direct consequence of the improvement is that the unphysical spurious velocities at the interfacial regions can be damped to neglectable scale. Together with the better conservation of total energy, the more accurate flow velocities lead to the more accurate temperature field which determines the dynamical and final states of the system. With the new model, the phase diagram of the liquid-vapor system obtained from simulation is more consistent with that from theoretical calculation. Very sharp interfaces can be achieved. The accuracy of simulation results are also verified by the Laplace law. The FFT scheme can be easily applied to other models for multiphase flows.Comment: 34 pages, 21 figure

    Anoikis resistance is a critical feature of highly aggressive ovarian cancer cells

    Get PDF
    High-grade serous ovarian cancer is an aggressive form of epithelial ovarian cancer (EOC), and accounts for the majority of deaths due to EOC. The critical cellular processes and underlying molecular mechanisms that define this malignancy remain poorly understood. Using a syngeneic murine model, we investigated the changes that accompanied the progression to increased aggressiveness induced by in vivo passage of mouse EOC cells. We found that enhanced anoikis resistance was a key cellular process associated with greater aggressiveness and tumorigenicity in vivo. Biochemical studies revealed that the enhanced anoikis resistance was associated with the activation of the Src/Akt/Erk signaling pathway. A higher rate of metabolism and autophagy were also associated with increased anoikis resistance. Blocking these pathways with specific inhibitors and/or genetic modifications significantly increased anoikis in vitro and inhibited tumor development in vivo. In addition, we demonstrated that similar signaling pathways were also involved in a human EOC cell line model. Collectively, our data suggest that anoikis resistance represents a critical and a distinguishing feature underlying the aggressiveness of ovarian cancer cells

    Transmutation prospect of long-lived nuclear waste induced by high-charge electron beam from laser plasma accelerator

    Full text link
    Photo-transmutation of long-lived nuclear waste induced by high-charge relativistic electron beam (e-beam) from laser plasma accelerator is demonstrated. Collimated relativistic e-beam with a high charge of approximately 100 nC is produced from high-intensity laser interaction with near-critical-density (NCD) plasma. Such e-beam impinges on a high-Z convertor and then radiates energetic bremsstrahlung photons with flux approaching 10^{11} per laser shot. Taking long-lived radionuclide ^{126}Sn as an example, the resulting transmutation reaction yield is the order of 10^{9} per laser shot, which is two orders of magnitude higher than obtained from previous studies. It is found that at lower densities, tightly focused laser irradiating relatively longer NCD plasmas can effectively enhance the transmutation efficiency. Furthermore, the photo-transmutation is generalized by considering mixed-nuclide waste samples, which suggests that the laser-accelerated high-charge e-beam could be an efficient tool to transmute long-lived nuclear waste.Comment: 13 pages, 8 figures, it has been submitted to Physics of Plasm

    Small-Vote Sample Selection for Label-Noise Learning

    Get PDF
    The small-loss criterion is widely used in recent label-noise learning methods. However, such a criterion only considers the loss of each training sample in a mini-batch but ignores the loss distribution in the whole training set. Moreover, the selection of clean samples depends on a heuristic clean data rate. As a result, some noisy-labeled samples are easily identified as clean ones, and vice versa. In this paper, we propose a novel yet simple sample selection method, which mainly consists of a Hierarchical Voting Scheme (HVS) and an Adaptive Clean data rate Estimation Strategy (ACES), to accurately identify clean samples and noisy-labeled samples for robust learning. Specifically, we propose HVS to effectively combine the global vote and the local vote, so that both epoch-level and batch-level information is exploited to assign a hierarchical vote for each mini-batch sample. Based on HVS, we further develop ACES to adaptively estimate the clean data rate by leveraging a 1D Gaussian Mixture Model (GMM). Experimental results show that our proposed method consistently outperforms several state-of-the-art label-noise learning methods on both synthetic and real-world noisy benchmark datasets

    YBCO-buffered NdBCO film with higher thermal stability in seeding REBCO Growth

    Full text link
    In this work, we report a strengthened superheating effect caused by a buffering YBa2Cu3Oy (Y123 or YBCO) layer in the Nd1+xBa2-xCu3O7-y (Nd123 or NdBCO) thin film with MgO substrate (i.e., NdBCO/YBCO/MgO thin film). In the cold-seeding melt-textured (MT) growth, the NdBCO/YBCO/MgO film presented an even higher superheating level, about 20 {\deg}C higher than that of non-buffered NdBCO film (i.e., NdBCO/MgO film). Using this NdBCO/YBCO/MgO film as seeds and undergoing a maximum processing temperature (Tmax) up to 1120 {\deg}C, we succeeded in growing various RE1+xBa2-xCu3O7-y (REBCO, RE=rare elements) bulk superconductors, including Gd1+xBa2-xCu3O7-y (GdBCO), Sm1+xBa2-xCu3O7-y (SmBCO) and NdBCO that have high peritectic temperatures (Tp). The pole figure (X-Ray \phi-scan) measurement reveals that the NdBCO/YBCO/MgO film has better in-plane alignment than the NdBCO/MgO film, indicating that the induced intermediate layer improves the crystallinity of the NdBCO film, which could be the main origin of the enhanced thermal stability. In short, possessing higher thermal stability and enduring a higher Tmax in the MT process, the NdBCO/YBCO/MgO film is beneficial to the growth of bulk superconductors in two aspects: (1) broad application for high-Tp REBCO materials; (2) effective suppression against heterogeneous nucleation, which is of great assistance in growing large and high-performance REBCO crystals.Comment: 9 pages, 4 figure
    • …
    corecore