2,796 research outputs found

    A Study of Actor and Action Semantic Retention in Video Supervoxel Segmentation

    Full text link
    Existing methods in the semantic computer vision community seem unable to deal with the explosion and richness of modern, open-source and social video content. Although sophisticated methods such as object detection or bag-of-words models have been well studied, they typically operate on low level features and ultimately suffer from either scalability issues or a lack of semantic meaning. On the other hand, video supervoxel segmentation has recently been established and applied to large scale data processing, which potentially serves as an intermediate representation to high level video semantic extraction. The supervoxels are rich decompositions of the video content: they capture object shape and motion well. However, it is not yet known if the supervoxel segmentation retains the semantics of the underlying video content. In this paper, we conduct a systematic study of how well the actor and action semantics are retained in video supervoxel segmentation. Our study has human observers watching supervoxel segmentation videos and trying to discriminate both actor (human or animal) and action (one of eight everyday actions). We gather and analyze a large set of 640 human perceptions over 96 videos in 3 different supervoxel scales. Furthermore, we conduct machine recognition experiments on a feature defined on supervoxel segmentation, called supervoxel shape context, which is inspired by the higher order processes in human perception. Our ultimate findings suggest that a significant amount of semantics have been well retained in the video supervoxel segmentation and can be used for further video analysis.Comment: This article is in review at the International Journal of Semantic Computin

    Stochastic Variational Inference for Hidden Markov Models

    Full text link
    Variational inference algorithms have proven successful for Bayesian analysis in large data settings, with recent advances using stochastic variational inference (SVI). However, such methods have largely been studied in independent or exchangeable data settings. We develop an SVI algorithm to learn the parameters of hidden Markov models (HMMs) in a time-dependent data setting. The challenge in applying stochastic optimization in this setting arises from dependencies in the chain, which must be broken to consider minibatches of observations. We propose an algorithm that harnesses the memory decay of the chain to adaptively bound errors arising from edge effects. We demonstrate the effectiveness of our algorithm on synthetic experiments and a large genomics dataset where a batch algorithm is computationally infeasible.Comment: Appears in Advances in Neural Information Processing Systems (NIPS), 201
    • …
    corecore