1,127 research outputs found

    Enhancement of process capabilities in electrically-assisted double sided incremental forming

    Get PDF
    © 2015 Elsevier Ltd. Electrically-assisted incremental sheet forming (E-ISF) is an effective method to improve formability by introducing the electric current in ISF process. This method is particularly useful for production of lightweight 'hard-to-form' materials such as magnesium and titanium alloys. However, the use of electricity and heat may also lead to side effects to formed components, such as unacceptable surface finish. In this work, an improved E-DSIF process has been developed by combining the electrically-assisted forming technology, the double sided incremental forming (DSIF) and a newly designed slave tool force control device to ensure stable tool-sheet contact. Different types of forming tools and toolpath strategies are explored to improve surface finish and geometrical accuracy by using a customized DSIF machine. AZ31B magnesium alloy sheets are formed into a truncated cone shape to verify the proposed E-DSIF process. In the investigation, the causes of rough surface finish are investigated in detail, and the surface finish is refined by improving the contact condition at tool-sheet interface. In addition, a hybrid toolpath strategy is proposed to further enhance the geometrical accuracy. The results demonstrate that the two challenging issues, surface finish and geometrical accuracy, could be improved by using the enhanced technologies of E-DSIF

    Determination of superconducting anisotropy from magnetization data on random powders as applied to LuNi2_2B2_2C, YNi2_2B2_2C and MgB2_2

    Full text link
    The recently discovered intermetallic superconductor MgB2 appears to have a highly anisotopic upper critical field with Hc2(max)/Hc2(min} = \gamma > 5. In order to determine the temperature dependence of both Hc2(max) and Hc2(min) we propose a method of extracting the superconducting anisotropy from the magnetization M(H,T) of randomly oriented powder samples. The method is based on two features in dM/dT the onset of diamagnetism at Tc(max), that is commonly associated with Hc2, and a kink in dM/dT at a lower temperature Tc(min). Results for LuNi2B2C and YNi2B2C powders are in agreement with anisotropic Hc2 obtained from magneto-transport measurements on single crystals. Using this method on four different types of MgB2 powder samples we are able to determine Hc2(max)(T) and Hc2(min)(T) with \gamma \approx 6

    Implementing the LPM effect in a parton cascade model

    Full text link
    Parton Cascade Models (PCM), which describe the full time-evolution of a system of quarks and gluons using pQCD interactions are ideally suited for the description of jet production, including the emission, evolution and energy-loss of the full parton shower in a hot and dense QCD medium. The Landau-Pomeranchuk-Migdal (LPM) effect, the quantum interference of parton wave functions due to repeated scatterings against the background medium, is likely the dominant in-medium effect affecting jet suppression. We have implemented a probabilistic implementation of the LPM effect within the PCM which can be validated against previously derived analytical calculations by Baier et al (BDMPS-Z). Presented at the 6th International Conference on Physics and Astrophysics of Quark Gluon Plasma (ICPAQGP 2010).Comment: 4 pages, 1 figure. A proceeding of ICPAGQP 201

    Hot Extrusion Effect on the Microstructure and Mechanical Properties of a Mg–Y–Nd–Zr Alloy

    No full text
    A Mg–Y–Nd–Zr alloy was prepared by casting and hot extrusion. The microstructure and mechanical properties of OM, SEM, XRD, TEM, and tensile tests were investigated with casting and hot extruded alloys. The results demonstrate that in a casting Mg–Y–Nd–Zr alloy, the α-Mg matrix is separated into the cell structure by a discontinuously distributed coarse Mg₂₄Y₅/α-Mg eutectic structure and fine Mg₁₂Nd particles.Сплав Mg-Y-Nd-Zr получен литьем и горячей экструзией. Исследованы микроструктура и механические свойства литейного и экструзионного сплавов с помощью оптической, сканирующей электронной, просвечивающей электронной микроскопии, рентгенографии и испытаний на растяжение. Показано, что матрица α-Mg в литейном сплаве превращается в ячеистую структуру за счет образования дискретно распределенной крупной эвтектики Mg₂₄Y₅ и мелких частиц Mg₁₂Nd/α-Mg

    First Principles Calculations of Fe on GaAs (100)

    Full text link
    We have calculated from first principles the electronic structure of 0.5 monolayer upto 5 monolayer thick Fe layers on top of a GaAs (100) surface. We find the Fe magnetic moment to be determined by the Fe-As distance. As segregates to the top of the Fe film, whereas Ga most likely is found within the Fe film. Moreover, we find an asymmetric in-plane contraction of our unit-cell along with an expansion perpendicular to the surface. We predict the number of Fe 3d-holes to increase with increasing Fe thickness on pp-doped GaAs.Comment: 9 pages, 14 figures, submitted to PR

    Mechanism investigation of friction-related effects in single point incremental forming using a developed oblique roller-ball tool

    Get PDF
    Single point incremental forming (SPIF) is a highly versatile and flexible process for rapid manufacturing of complex sheet metal parts. In the SPIF process, a ball nose tool moves along a predefined tool path to form the sheet to desired shapes. Due to its unique ability in local deformation of sheet metal, the friction condition between the tool and sheet plays a significant role in material deformation. The effects of friction on surface finish, forming load, material deformation and formability are studied using a newly developed oblique roller ball (ORB) tool. Four grades of aluminum sheet including AA1100, AA2024, AA5052 and AA6111 are employed in the experiments. The material deformation under both the ORB tool and conventional rigid tool are studied by drilling a small hole in the sheet. The experimental results suggest that by reducing the friction resistance using the ORB tool, better surface quality, reduced forming load, smaller through-the-thickness-shear and higher formability can be achieved. To obtain a better understanding of the frictional effect, an analytical model is developed based on the analysis of the stress state in the SPIF deformation zone. Using the developed model, an explicit relationship between the stress state and forming parameters is established. The experimental observations are in good agreement with the developed model. The model can also be used to explain two contrary effects of friction and corresponding through-the-thickness-shear: increase of friction would potentially enhance the forming stability and suppress the necking; however, increase of friction would also increase the stress triaxiality and decrease the formability. The final role of the friction effect depends on the significance of each effect in SPIF process

    Investigation of material deformation mechanism in double side incremental sheet forming

    Get PDF
    Double side incremental forming (DSIF) is an emerging technology in incremental sheet forming (ISF) in recent years. By employing two forming tools at each side of the sheet, the DSIF process can provide additional process flexibility, comparing to the conventional single point incremental forming (SPIF) process, therefore to produce complex geometries without the need of using a backing plate or supporting die. Although this process has been proposed for years, there is only limited research on this process and there are still many unanswered open questions about this process. Using a newly developed ISF machine, the DSIF process is investigated in this work. Focusing on the fundamental aspects of material deformation and fracture mechanism, this paper aims to improve the understanding of the DSIF process. Two key process parameters considered in this study include the supporting force and relative position between master and slave tools. The material deformation, the final thickness distribution as well as the formability under varying conditions of these two process variables are investigated. An analytical model was developed to evaluate the stress state in the deformation zone. Using the developed model, an explicit relationship between the stress state and key process parameters was established and a drop of stress triaxiality was observed in the double contact zone, which explains the enhanced formability in the DSIF process. Based on the analytical and experimental investigation, the advancements and challenges of the DSIF process are discussed with a few conclusions drawn for future research

    Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors

    Full text link
    Quasiclassic Uzadel equations for two-band superconductors in the dirty limit with the account of both intraband and interband scattering by nonmagnetic impurities are derived for any anisotropic Fermi surface. From these equations the Ginzburg-Landau equations, and the critical temperature TcT_c are obtained. An equation for the upper critical field, which determines both the temperature dependence of Hc2(T)H_{c2}(T) and the orientational dependence of Hc2(θ)H_{c2}(\theta) as a function of the angle θ\theta between H{\bf H} and the c-axis is obtained. It is shown that the shape of the Hc2(T)H_{c2}(T) curve essentially depends on the ratio of the intraband electron diffusivities D1D_1 and D1D_1, and can be very different from the standard one-gap dirty limit theory. In particular, the value Hc2(0)H_{c2}(0) can considerably exceed 0.7TcdHc2/dTc0.7T_cdH_{c2}/dT_c, which can have important consequences for applications of MgB2MgB_2. A scaling relation is proposed which enables one to obtain the angular dependence of Hc2(θ)H_{c2}(\theta) from the equation for Hc2H_{c2} at Hc{\bf H}\| c. It is shown that, depending on the relation between D1D_1 and D2D_2, the ratio of the upper critical field Hc2/Hc2H_{c2}^\|/H_{c2}^\perp for Hab{\bf H}\| ab and Hab{\bf H}\perp ab can both increase and decrease as the temperature decreases. Implications of the obtained results for MgB2MgB_2 are discussed

    Hall Effect and Resistivity in High-Tc Superconductors: The Conserving Approximation

    Full text link
    The Hall coefficient (R_H) of high-Tc cuprates in the normal state shows the striking non-Fermi liquid behavior: R_H follows a Curie-Weiss type temperature dependence, and |R_H|>>1/|ne| at low temperatures in the under-doped compounds. Moreover, R_H is positive for hole-doped compounds and is negative for electron-doped ones, although each of them has a similar hole-like Fermi surface. In this paper, we give the explanation of this long-standing problem from the standpoint of the nearly antiferromagnetic (AF) Fermi liquid. We consider seriously the vertex corrections for the current which are indispensable to satisfy the conservation laws, which are violated within the conventional Boltzmann transport approximation. The obtained total current J_k takes an enhanced value and is no more perpendicular to the Fermi surface due to the strong AF fluctuations. By virtue of this mechanism, the anomalous behavior of R_H in high-Tc cuprates is neutrally explained. We find that both the temperature and the (electron, or hole) doping dependences of R_H in high-T_c cuprates are reproduced well by numerical calculations based on the fluctuation-exchange (FLEX) approximation, applied to the single-band Hubbard model. We also discuss the temperature dependence of R_H in other nearly AF metals, e.g., V_2O_3, kappa-BEDT-TTF organic superconductors, and heavy fermion systems close to the AF phase boundary.Comment: 19 pages, to appear in Phys. Rev. B, No.59, Vol.22, 199

    Magnetic fields in cosmic particle acceleration sources

    Full text link
    We review here some magnetic phenomena in astrophysical particle accelerators associated with collisionless shocks in supernova remnants, radio galaxies and clusters of galaxies. A specific feature is that the accelerated particles can play an important role in magnetic field evolution in the objects. We discuss a number of CR-driven, magnetic field amplification processes that are likely to operate when diffusive shock acceleration (DSA) becomes efficient and nonlinear. The turbulent magnetic fields produced by these processes determine the maximum energies of accelerated particles and result in specific features in the observed photon radiation of the sources. Equally important, magnetic field amplification by the CR currents and pressure anisotropies may affect the shocked gas temperatures and compression, both in the shock precursor and in the downstream flow, if the shock is an efficient CR accelerator. Strong fluctuations of the magnetic field on scales above the radiation formation length in the shock vicinity result in intermittent structures observable in synchrotron emission images. Resonant and non-resonant CR streaming instabilities in the shock precursor can generate mesoscale magnetic fields with scale-sizes comparable to supernova remnants and even superbubbles. This opens the possibility that magnetic fields in the earliest galaxies were produced by the first generation Population III supernova remnants and by clustered supernovae in star forming regions.Comment: 30 pages, Space Science Review
    corecore