333 research outputs found

    cDNA cloning and mRNA expression of heat shock protein 70 gene in blood clam Tegillarca granosa against heavy metals challenge

    Get PDF
    In this study, the full-length heat shock protein 70 of Tegillarca granosa was cloned from cDNA library by rapid amplification of cDNA end (RACE). The open reading frame (ORF) of heat shock protein 70 was 1968 bp, and it encoded a protein of 655 amino acids with a predicted molecular weight of 71.48 kDa and an isoelectric point of 5.25. Basic local alignment search tool (BLAST) analysis showed that the heat shock protein 70 of T. granosa shared high similarity with other species, supporting that it is a new member of heat shock protein family. Western blot analysis revealed that the generated polyclonal antibodies could specially detect native protein from whole cell lysate of T. granosa. The spatial distribution confirmed that the heat shock protein 70 was abundant in visceral mass, gill and haemocytes, and weakly in foot, mantle and adductor. Heavy metal pollutes such as lead (Pb2+), cadmium (Cd2+) and copper (Cu2+) could induce the gene expression in similar manners by quantitative real-time polymerase chain reaction (PCR). The present results indicate that heat shock protein 70 of T. granosa may be involved in environmental pollution challenges and should be considered as one of T. granosa promising molecular marker candidates.Keywords: Tegillarca granosa, heat shock protein 70, heavy metals, quantitative real-time polymerase chain reaction (PCR) African Journal of Biotechnology Vol. 12(18), pp. 2341-235

    Molecular Characterization of a Novel Big Defensin from Clam Venerupis philippinarum

    Get PDF
    Antimicrobial peptides (AMPs) are important mediators of the primary defense mechanism against microbial invasion. In the present study, a big defensin was identified from Venerupis philippinarum haemocytes (denoted as VpBD) by RACE and EST approaches. The VpBD cDNA contained an open reading frame (ORF) of 285 bp encoding a polypeptide of 94 amino acids. The deduce amino acid sequence of VpBD shared the common features of big defensin including disulfide array organization and helix structure, indicating that VpBD should be a new member of the big defensin family. The mRNA transcript of VpBD was up-regulated significantly during the first 24 hr after Vibrio anguillarum challenge, which was 7.4-fold increase compared to that of the control group. Then the expression decreased gradually from 24 hr to 96 hr, and the lowest expression level was detected at 96 hr post-infection, which was still 3.9-fold higher than that of control. The mature peptide of VpBD was recombined in Escherichia coli and purified for minimum inhibitory concentration (MIC) determination. The rVpBD displayed broad-spectrum inhibitory activity towards all tested bacteria with the highest activity against Staphyloccocus aureus and Pseudomonas putida. These results indicated that VpBD was involved in the host immune response against bacterial infection and might contribute to the clearance of invading bacteria

    Growth responses of Ulva prolifera to inorganic and organic nutrients: Implications for macroalgal blooms in the southern Yellow Sea, China

    No full text
    International audienceThe marine macrophyte Ulva prolifera is the dominant green-tide-forming seaweed in the southern Yellow Sea, China. Here we assessed, in the laboratory, the growth rate and nutrient uptake responses of U. prolifera to different nutrient treatments. The growth rates were enhanced in incubations with added organic and inorganic nitrogen [i.e. nitrate (NO3−), ammonium (NH4+), urea and glycine] and phosphorus [i.e. phosphate (PO43−), adenosine triphosphate (ATP) and glucose 6-phosphate (G-6-P)], relative to the control. The relative growth rates of U. prolifera were higher when enriched with dissolved organic nitrogen (urea and glycine) and phosphorus (ATP and G-6-P) than inorganic nitrogen (NO3− and NH4+) and phosphorus (PO43−). In contrast, the affinity was higher for inorganic than organic nutrients. Field data in the southern Yellow Sea showed significant inverse correlations between macroalgal biomass and dissolved organic nutrients. Our laboratory and field results indicated that organic nutrients such as urea, glycine and ATP, may contribute to the development of macroalgal blooms in the southern Yellow Sea

    Laying Bare: Agamben, Chandler, and The Responsibility to Protect

    Get PDF
    This paper demonstrates the hidden similarities between Raymond Chandler’s prototypical noir The Big Sleep, and the United Nations Responsibility to Protect (R2P) document. By taking up the work of philosopher Giorgio Agamben, this paper shows that the bare life produces the form of protection embodied by Philip Marlowe in Chandler’s novel and by the United Nations Security Council in R2P. Agamben’s theorizing of the extra-legal status of the sovereign pertains to both texts, in which the protector exists outside of the law. Philip Marlowe, tasked with preventing the distribution of pornographic images, commits breaking-and-entering, withholding evidence, and murder. Analogously, R2P advocates for the Security Council’s ability to trespass laws that safeguard national sovereignty in order to prevent “bare” atrocities against human life. As Agamben demonstrates, the extra-legal position of the protector is made possible by “stripping bare” human life. This paper also gestures towards limitations of Agamben’s thought by indicating, through a comparison of these two texts, that bare life produces states of exception as the object of protection rather than punishment

    A Comparison of Molecular Biology Mechanism of Shewanella putrefaciens between Fresh and Terrestrial Sewage Wastewater

    Get PDF
    Municipal and industrial wastewater is often discharged into the environment without appropriate treatment, especially in developing countries. As a result, many rivers and oceans are contaminated. It is urgent to control and administer treatments to these contaminated rivers and oceans. However, most mechanisms of bacterial colonization in contaminated rivers and oceans were unknown, especially in sewage outlets. We found Shewanella putrefaciens to be the primary bacteria in the terrestrial sewage wastewater outlets around Ningbo City, China. Therefore, in this study, we applied a combination of differential proteomics, metabolomics, and real-time fluorescent quantitative PCR techniques to identify bacteria intracellular metabolites. We found S. putrefaciens had 12 different proteins differentially expressed in freshwater culture than when grown in wastewater, referring to the formation of biological membranes (Omp35, OmpW), energy metabolism (SOD, deoxyribose-phosphate pyrophosphokinase), fatty acid metabolism (beta-ketoacyl synthase), secondary metabolism, TCA cycle, lysine degradation (2-oxoglutarate reductase), and propionic acid metabolism (succinyl coenzyme A synthetase). The sequences of these 12 differentially expressed proteins were aligned with sequences downloaded from NCBI. There are also 27 differentially concentrated metabolites detected by NMR, including alcohols (ethanol, isopropanol), amines (dimethylamine, ethanolamine), amino acids (alanine, leucine), amine compounds (bilinerurine), nucleic acid compounds (nucleosides, inosines), organic acids (formate, acetate). Formate and ethanolamine show significant difference between the two environments and are possibly involved in energy metabolism, glycerophospholipid and ether lipids metabolism to provide energy supply and material basis for engraftment in sewage. Because understanding S. putrefaciens’s biological mechanism of colonization (protein, gene express and metabolites) in terrestrial sewage outlets is so important to administering and improving contaminated river and to predicting and steering performance, we delved into the biological mechanism that sheds light on the effect of environmental conditions on metabolic pathways

    Lipid-lowering drugs affect lung cancer risk via sphingolipid metabolism: a drug-target Mendelian randomization study

    Get PDF
    Background: The causal relationship between lipid-lowering drug (LLD) use and lung cancer risk is controversial, and the role of sphingolipid metabolism in this effect remains unclear.Methods: Genome-wide association study data on low-density lipoprotein (LDL), apolipoprotein B (ApoB), and triglycerides (TG) were used to develop genetic instrumental variables (IVs) for LLDs. Two-step Mendelian randomization analyses were performed to examine the causal relationship between LLDs and lung cancer risk. The effects of ceramide, sphingosine-1-phosphate (S1P), and ceramidases on lung cancer risk were explored, and the proportions of the effects of LLDs on lung cancer risk mediated by sphingolipid metabolism were calculated.Results:APOB inhibition decreased the lung cancer risk in ever-smokers via ApoB (odds ratio [OR] 0.81, 95% confidence interval [CI] 0.70–0.92, p = 0.010), LDL (OR 0.82, 95% CI 0.71–0.96, p = 0.040), and TG (OR 0.63, 95% CI 0.46–0.83, p = 0.015) reduction by 1 standard deviation (SD), decreased small-cell lung cancer (SCLC) risk via LDL reduction by 1 SD (OR 0.71, 95% CI 0.56–0.90, p = 0.016), and decreased the plasma ceramide level and increased the neutral ceramidase level. APOC3 inhibition decreased the lung adenocarcinoma (LUAD) risk (OR 0.60, 95% CI 0.43–0.84, p = 0.039) but increased SCLC risk (OR 2.18, 95% CI 1.17–4.09, p = 0.029) via ApoB reduction by 1 SD. HMGCR inhibition increased SCLC risk via ApoB reduction by 1 SD (OR 3.04, 95% CI 1.38–6.70, p = 0.014). The LPL agonist decreased SCLC risk via ApoB (OR 0.20, 95% CI 0.07–0.58, p = 0.012) and TG reduction (OR 0.58, 95% CI 0.43–0.77, p = 0.003) while increased the plasma S1P level. PCSK9 inhibition decreased the ceramide level. Neutral ceramidase mediated 8.1% and 9.5% of the reduced lung cancer risk in ever-smokers via ApoB and TG reduction by APOB inhibition, respectively, and mediated 8.7% of the reduced LUAD risk via ApoB reduction by APOC3 inhibition.Conclusion: We elucidated the intricate interplay between LLDs, sphingolipid metabolites, and lung cancer risk. Associations of APOB, APOC3, and HMGCR inhibition and LPL agonist with distinct lung cancer risks underscore the multifaceted nature of these relationships. The observed mediation effects highlight the considerable influence of neutral ceramidase on the lung cancer risk reduction achieved by APOB and APOC3 inhibition

    Tumor-Derived Exosomal Protein Tyrosine Phosphatase Receptor Type O Polarizes Macrophage to Suppress Breast Tumor Cell Invasion and Migration

    Get PDF
    Tumor-derived exosomes, containing multiple nucleic acids and proteins, have been implicated to participate in the interaction between tumor cells and microenvironment. However, the functional involvement of phosphatases in tumor-derived exosomes is not fully understood. We and others previously demonstrated that protein tyrosine phosphatase receptor type O (PTPRO) acts as a tumor suppressor in multiple cancer types. In addition, its role in tumor immune microenvironment remains elusive. Bioinformatical analyses revealed that PTPRO was closely associated with immune infiltration, and positively correlated to M1-like macrophages, but negatively correlated to M2-like macrophages in breast cancer tissues. Co-cultured with PTPRO-overexpressing breast cancer cells increased the proportion of M1-like tumor-associated macrophages (TAMs) while decreased that of M2-like TAMs. Further, we observed that tumor-derived exosomal PTPRO induced M1-like macrophage polarization, and regulated the corresponding functional phenotypes. Moreover, tumor cell-derived exosomal PTPRO inhibited breast cancer cell invasion and migration, and inactivated STAT signaling in macrophages. Our data suggested that exosomal PTPRO inhibited breast cancer invasion and migration by modulating macrophage polarization. Anti-tumoral effect of exosomal PTPRO was mediated by inactivating STAT family in macrophages. These findings highlight a novel mechanism of tumor invasion regulated by tumor-derived exosomal tyrosine phosphatase, which is of translational potential for the therapeutic strategy against breast cancer

    Insight into the AP2/ERF transcription factor superfamily in sesame and expression profiling of DREB subfamily under drought stress

    Get PDF
    Background. Sesame is an important oilseed crop mainly grown in inclement areas with high temperatures and frequent drought. Thus, drought constitutes one of the major constraints of its production. The AP2/ERF is a large family of transcription factors known to play significant roles in various plant processes including biotic and abiotic stress responses. Despite their importance, little is known about sesame AP2/ERF genes. This constitutes a limitation for drought-tolerance candidate genes discovery and breeding for tolerance to water deficit. Results. One hundred thirty-two AP2/ERF genes were identified in the sesame genome. Based on the number of domains, conserved motifs, genes structure and phylogenetic analysis including 5 relatives species, they were classified into 24 AP2, 41 DREB, 61 ERF, 4 RAV and 2 Soloist. The number of sesame AP2/ERF genes was relatively few compared to that of other relatives, probably due to gene loss in ERF and DREB subfamilies during evolutionary process. In general, the AP2/ERF genes were expressed differently in different tissues but exhibited the highest expression levels in the root. Mostly all DREB genes were responsive to drought stress. Regulation by drought is not specific to one DREB group but depends on the genes and the group A6 and A1 appeared to be more actively expressed to cope with drought. Conclusions. This study provides insights into the classification, evolution and basic functional analysis of AP2/ERF genes in sesame which revealed their putative involvement in multiple tissue-/developmental stages. Out of 20 genes which were significantly up- /down-regulated under drought stress, the gene AP2si16 may be considered as potential candidate gene for further functional validation as well for utilization in sesame improvement programs for drought stress tolerance. (Résumé d'auteur
    corecore