109 research outputs found
Identification of Small-Molecule Inhibitors against Meso-2, 6-Diaminopimelate Dehydrogenase from Porphyromonas gingivalis
Species-specific antimicrobial therapy has the potential to combat the increasing threat of antibiotic resistance and alteration of the human microbiome. We therefore set out to demonstrate the beginning of a pathogen-selective drug discovery method using the periodontal pathogen Porphyromonas gingivalis as a model. Through our knowledge of metabolic networks and essential genes we identified a βdruggableβ essential target, meso-diaminopimelate dehydrogenase, which is found in a limited number of species. We adopted a high-throughput virtual screen method on the ZINC chemical library to select a group of potential small-molecule inhibitors. Meso-diaminopimelate dehydrogenase from P. gingivaliswas first expressed and purified in Escherichia coli then characterized for enzymatic inhibitor screening studies. Several inhibitors with similar structural scaffolds containing a sulfonamide core and aromatic substituents showed dose-dependent inhibition. These compounds were further assayed showing reasonable whole-cell activity and the inhibition mechanism was determined. We conclude that the establishment of this target and screening strategy provides a model for the future development of new antimicrobials
Expression of MDR1, HIF-1Ξ± and MRP1 in sacral chordoma and chordoma cell line CM-319
<p>Abstract</p> <p>Background</p> <p>Chordoma was a typically slow-growing tumor. The therapeutic approach to chordoma had traditionally relied mainly on surgical therapy. And the main reason for therapeutic failure was resistance to chemotherapy and radiotherapy. However the refractory mechanism was not clear. The aim of this study was to investigate the expression of three genes (<it>MDR1</it>, <it>HIF-1Ξ±</it> and <it>MRP1</it>) associated with resistance to chemotherapy and radiotherapy in chordoma and chordoma cell line CM-319.</p> <p>Materials and methods</p> <p>Using immunohistochemical techniques, the expression of MDR1, HIF-1Ξ± and MRP1 was investigated in 50 chordoma specimen. Using RT-PCR and Western blot, the expression of MDR1, HIF-1Ξ± and MRP1 was investigated in chordoma and chordoma cell line CM-319.</p> <p>Results</p> <p>Expression of MDR1, HIF-1Ξ± and MRP1 was observed in 10%, 80% and 74% of all cases, respectively. Expression of MRP1 was correlated with HIF-1Ξ±. On the other hand, expression of MDR1 was not correlated with the expression of HIF-1Ξ± or MRP1. The expression of HIF-1Ξ± and MRP1 was observed, but MDR1 was not observed in chordoma and CM-319.</p> <p>Conclusion</p> <p>Expression of HIF-1Ξ± and MRP1 was observed in most chordoma specimen and CM-319 cell line; expression of HIF-1Ξ± correlated with MRP1. HIF-1Ξ± and MRP1 may play a role in the multidrug resistance of chordoma to chemotherapy.</p
Transcriptional profiles of bovine in vivo pre-implantation development
Β© 2014 Jiang et al.; licensee BioMed Central Ltd. Background: During mammalian pre-implantation embryonic development dramatic and orchestrated changes occur in gene transcription. The identification of the complete changes has not been possible until the development of the Next Generation Sequencing Technology.Results: Here we report comprehensive transcriptome dynamics of single matured bovine oocytes and pre-implantation embryos developed in vivo. Surprisingly, more than half of the estimated 22,000 bovine genes, 11,488 to 12,729 involved in more than 100 pathways, is expressed in oocytes and early embryos. Despite the similarity in the total numbers of genes expressed across stages, the nature of the expressed genes is dramatically different. A total of 2,845 genes were differentially expressed among different stages, of which the largest change was observed between the 4- and 8-cell stages, demonstrating that the bovine embryonic genome is activated at this transition. Additionally, 774 genes were identified as only expressed/highly enriched in particular stages of development, suggesting their stage-specific roles in embryogenesis. Using weighted gene co-expression network analysis, we found 12 stage-specific modules of co-expressed genes that can be used to represent the corresponding stage of development. Furthermore, we identified conserved key members (or hub genes) of the bovine expressed gene networks. Their vast association with other embryonic genes suggests that they may have important regulatory roles in embryo development; yet, the majority of the hub genes are relatively unknown/under-studied in embryos. We also conducted the first comparison of embryonic expression profiles across three mammalian species, human, mouse and bovine, for which RNA-seq data are available. We found that the three species share more maternally deposited genes than embryonic genome activated genes. More importantly, there are more similarities in embryonic transcriptomes between bovine and humans than between humans and mice, demonstrating that bovine embryos are better models for human embryonic development.Conclusions: This study provides a comprehensive examination of gene activities in bovine embryos and identified little-known potential master regulators of pre-implantation development
Methylome Dynamics of Bovine Gametes and in vivo Early Embryos
DNA methylation undergoes drastic fluctuation during early mammalian embryogenesis. The dynamics of global DNA methylation in bovine embryos, however, have mostly been studied by immunostaining. We adopted the whole genome bisulfite sequencing (WGBS) method to characterize stage-specific genome-wide DNA methylation in bovine sperm, immature oocytes, oocytes matured in vivo and in vitro, as well as in vivo developed single embryos at the 2-, 4-, 8-, and 16-cell stages. We found that the major wave of genome-wide DNA demethylation was complete by the 8-cell stage when de novo methylation became prominent. Sperm and oocytes were differentially methylated in numerous regions (DMRs), which were primarily intergenic, suggesting that these non-coding regions may play important roles in gamete specification. DMRs were also identified between in vivo and in vitro matured oocytes, suggesting environmental effects on epigenetic modifications. In addition, virtually no (less than 1.5%) DNA methylation was found in mitochondrial DNA. Finally, by using RNA-seq data generated from embryos at the same developmental stages, we revealed a weak inverse correlation between gene expression and promoter methylation. This comprehensive analysis provides insight into the critical features of the bovine embryo methylome, and serves as an important reference for embryos produced in vitro, such as by in vitro fertilization and cloning. Lastly, these data can also provide a model for the epigenetic dynamics in human early embryos
SpxA1 Involved in Hydrogen Peroxide Production, Stress Tolerance and Endocarditis Virulence in Streptococcus sanguinis
Streptococcus sanguinis is one of the most common agents of infective endocarditis. Spx proteins are a group of global regulators that negatively or positively control global transcription initiation. In this study, we characterized the spxA1 gene in S. sanguinis SK36. The spxA1 null mutant displayed opaque colony morphology, reduced hydrogen peroxide (H2O2) production, and reduced antagonistic activity against Streptococcus mutans UA159 relative to the wild type strain. The ΞspxA1 mutant also demonstrated decreased tolerance to high temperature, acidic and oxidative stresses. Further analysis revealed that ΞspxA1 also exhibited a βΌ5-fold reduction in competitiveness in an animal model of endocarditis. Microarray studies indicated that expression of several oxidative stress genes was downregulated in the ΞspxA1 mutant. The expression of spxB and nox was significantly decreased in the ΞspxA1 mutant compared with the wild type. These results indicate that spxA1 plays a major role in H2O2 production, stress tolerance and endocarditis virulence in S. sanguinis SK36. The second spx gene, spxA2, was also found in S. sanguinis SK36. The spxA2 null mutant was found to be defective for growth under normal conditions and showed sensitivity to high temperature, acidic and oxidative stresses
A Piezoelectric Immunosensor Using Hybrid Self-Assembled Monolayers for Detection of Schistosoma japonicum
BACKGROUND: The parasite Schistosoma japonicum causes schistosomiasis disease, which threatens human life and hampers economic and social development in some Asian countries. An important lesson learned from efforts to reduce the occurrence of schistosomiasis is that the diagnostic approach must be altered as further progress is made towards the control and ultimate elimination of the disease. METHODOLOGY/PRINCIPAL FINDINGS: Using mixed self-assembled monolayer membrane (mixed SAM) technology, a mixture of mercaptopropionic acid (MPA) and mercaptoethanol (ME) was self-assembled on the surface of quartz crystals by gold-sulphur-bonds. Soluble egg antigens (SEA) of S. japonicum were then cross-linked to the quartz crystal using a special coupling agent. As compared with the traditional single self-assembled monolayer immobilization method, S. japonicum antigen (SjAg) immobilization using mixed self-assembled monolayers exhibits much greater immunoreactivity. Under optimal experimental conditions, the detection range is 1:1500 to 1:60 (infected rabbit serum dilution ratios). We measured several infected rabbit serum samples with varying S. japonicum antibody (SjAb) concentrations using both immunosensor and ELISA techniques and then produced a correlation analysis. The correlation coefficients reached 0.973. CONCLUSIONS/SIGNIFICANCE: We have developed a new, simple, sensitive, and reusable piezoelectric immunosensor that directly detects SjAb in the serum. This method may represent an alternative to the current diagnostic methods for S. japonicum infection in the clinical laboratory or for analysis outside the laboratory
MicroRNA-34a Inhibits the Proliferation and Metastasis of Osteosarcoma Cells Both In Vitro and In Vivo
BACKGROUND: MicroRNAs (miRNAs) are a class of endogenously expressed, small noncoding RNAs, which suppress its target mRNAs at the post-transcriptional level. Studies have demonstrated that miR-34a, which is a direct target of the p53 tumor suppressor gene, functions as a tumor suppressor and is associated with the tumor growth and metastasis of various human malignances. However, the role of miR-34a in osteosarcoma has not been totally elucidated. In the present study, the effects of miR-34a on osteosarcoma and the possible mechanism by which miR-34a affected the tumor growth and metastasis of osteosarcoma were investigated. METHODOLOGY/PRINCIPAL FINDING: Over-expression of miR-34a partially inhibited proliferation, migration and invasion of osteosarcoma cells in vitro, as well as the tumor growth and pulmonary metastasis of osteosarcoma cells in vivo. c-Met is a target of miR-34a, and regulates the migration and invasion of osteosarcoma cells. Osteosarcoma cells over-expressing miR-34a exhibited a significant decrease in the expression levels of c-Met mRNA and protein simultaneously. Finally, the results from bioinformatics analysis demonstrated that there were multiple putative targets of miR-34a that may be associated with the proliferation and metastasis of osteosarcoma, including factors in Wnt and Notch signaling pathways. CONCLUSION/SIGNIFICANCE: The results presented in this study demonstrated that over-expression of miR-34a could inhibit the tumor growth and metastasis of osteosarcoma probably through down regulating c-Met. And there are other putative miR-34a target genes beside c-Met which could potentially be key players in the development of osteosarcoma. Since pulmonary metastases are responsible for mortality of patient carrying osteosarcoma, miR-34a may prove to be a promising gene therapeutic agent. It will be interesting to further investigate the mechanism by which miR-34a functions as a tumor suppressor gene in osteosarcoma
Automatic Evaluation Method for Functional Movement Screening Based on a Dual-Stream Network and Feature Fusion
Functional Movement Screening (FMS) is a movement pattern quality assessment system used to assess basic movement capabilities such as flexibility, stability, and pliability. Movement impairments and abnormal postures can be identified through peculiar movements and postures of the body. The reliability, validity, and accuracy of functional movement screening are difficult to test due to the subjective nature of the assessment. In this sense, this paper presents an automatic evaluation method for functional movement screening based on a dual-stream network and feature fusion. First, the RAFT algorithm is used to estimate the optical flow of a video, generating a set of optical flow images to represent the motion between consecutive frames. By inputting optical flow images and original video frames separately into the I3D model, it can better capture spatiotemporal features compared to the single-stream method. Meanwhile, this paper introduces a simple but effective attention fusion method that combines features extracted from optical flow with the original frames, enabling the network to focus on the most relevant parts of the input data, thereby improving prediction accuracy. The prediction of the four categories of FMS results was performed. It produced better correlation results compared to other more complex fusion protocols, with an accuracy improvement of 3% over the best-performing fusion method. Tests on public datasets showed that the evaluation metrics of the method proposed in this paper were the most advanced, with an accuracy improvement of approximately 4% compared to the currently superior methods. The use of deep learning methods makes it more objective and reliable to identify human movement impairments and abnormal postures
- β¦